Progress of Mechanical Design of PICO Focal Plane

Qi Wen, Shaul Hanany, Joel Nielsen July 25th, 2018

Things from last meeting

- Putting top of lenslets on same plane
- Cavity between detector wafers and backplane
- Thermal expansions: wafer-mount slots
- Heat sinking: Indium is superconductive at 100 mK

Bottom frame only

Silicon Lenslet wafer

Silicon detector wafer

L / R = 0.46 Detector wafers (red) = 0.675 mm **Cavity = lambda_central / 5 (adjustable)** TDM silicon wafers (yellow) = 1.5 mm

Bottom frame + top frame

Silicon Lenslet wafer

L / R = 0.46 Detector wafers (red) = 0.675 mm **Cavity = lambda_central / 5 (adjustable)** TDM silicon wafers (yellow) = 1.5 mm

Bottom frame only

Minimum gap between neighboring wafers = 4 mm Extension of wafers = 4 mm Each wafer has at least 3 extensions Wall thickness = gap - 2 mm (bot), gap (top)

Bottom frame + top frame

Minimum gap between neighboring wafers = 4 mm Extension of wafers = 4 mm Each wafer has at least 3 extensions Wall thickness = gap - 2 mm (bot), gap (top)

Through wafer vias + Indium-bump bondings

Staguhn et al, Development of a robust, efficient process to produce scalable, superconducting kilopixel far-IR detector arrays, SPIE(2018)

Through wafer vias + Indium-bump bondings

Heat sinking through Indium-bump bondings

Indium*		Geometry				
		# of bolos	13 k			
		# of Indium bumps	26 k			
Tc	3.374 K	Diameter of bumps	20 um			
		Height of bumps	10 um			
Thermal conductivity k at 100 mK (superconductin g state)	6.75 e-5 W/cm K	# of bump layers	2			
		Total length L	20 um			
		Total area A	4.68 cm^2			

*Sladek, R.J.: Thermal conductivity of Indium-Thallium alloys at low temperatures. Phys. Rev. 97(4), 902 (1955) Heat sinking through Indium-bump bondings

Weight Estimation

Components	Mass [kg]			
Copper (Invar) Frames	8.67 (7.89)			
Silicon Lenslet wafers + detector wafers	4.59 0.97 14.23 (13.45)			
Silicon TDM chips (if 2mm thick)				
Total				

Things to do

• Back plane under wafers

- Determine the thermal load (optical + electrical) on focal plane
 - 20 K PR, 4K box

- Sizes of of central horn fed pixels G, H, I
 - plan to scale EBEX feed horns to desired frequencies

BACK-UP SLIDES

Normal states

Metal or alloy	Chemical composition	References	100 mK	250 mK	500 mK	750 mK	1 K	2 K
Alluminium	Al 99.999 %	[1]	-	-	3.1	4.3	-	-
Copper	Cu high purity	[2]	-	3.2	6.2	-	-	-
	Cu low purity	[2]	-	4×10^{-1}	8×10^{-1}	-	-	-
	Cu 99.999 %	[3]	-	-	-	-	3	-
Gold	Au 99.999 %	[1]	-	-	6.8×10^{-1}	1.0	-	-
	Au 99.999 %	[3]	-	-	-		-	
Indium	In	[4]	5×10^{-2}	2×10^{-1}	3×10^{-1}	5×10^{-1}	7×10^{-1}	1.3
Manganin [§]	Cu _{8.4} Mn _{1.2} Ni _{0.4}	[5]	5.2×10^{-5}	1.4×10^{-4}	3.0×10^{-4}	4.9×10^{-4}	$6 \ 10^{-4}$	$2 \ 10^{-3}$
Nickel	Ni 99.995 %	[1]	-	-	1.2×10^{-1}	1.9×10^{-1}	-	-
Palladium	Pd 99.999 %	[1]	-	-	1.8×10^{-1}	-	-	-
Palladium-Alluminium-Rhenium	Pd ₇ Al ₂ Re ₁	[6]	-	-	1.6×10^{-5}	4.0×10^{-5}	8×10^{-5}	3×10^{-4}
Platinum	Pt 99.999 %	[1]	-	-	1.4×10^{-1}	2.4×10^{-1}	-	-
Rhenium	Re 99.994 %	[1]	-	-	4×10^{-1}	7.4×10^{-1}	-	-
Silver	Ag 99.999 %	[1]	-	-	6.7×10^{-1}	9.7×10^{-1}	-	-
	Ag > 99.99 %	[3]	-	-	-		4	
Tantalum	Ta 99.994 %	[1]	-	-	7×10^{-2}	1×10^{-1}	1.4×10^{-1}	_
Titanium Alluminium	Ti ₆ Al	[5]	-	1.6×10^{-5}	1×10^{-4}	2.5×10^{-4}	4×10^{-4}	1.1×10^{-3}
Tungsten	W	[1]	-	-	7×10^{-2}	1.1×10^{-1}	1.4×10^{-1}	-

Table 9.1 Very low temperature data of thermal conductivity (W/cm K) of metals and alloys

The symbol § refers to weight percentage while other composition are molar

G. Ventura and M. Perfetti, Thermal Properties of Solids at Room and Cryogenic Temperatures, Springer, p 961. (2014)

Ratio between superconducting and normal states as a function of T/Tc

FIG. 9. K_{es}/K_{en} for indium versus reduced temperature compared with Heisenberg's function $2t^2/(1+t^4)$ and the empirical function $3t^2/(1+t^4)$.

Tc=3.374 K At 100 mK, Kn = 5e-2 W / (cm*K). So, according to empirical fit, Ks = 6.75 e-5 W/cm K

13K bolos, 26K indium bumps
20 um in diameter, 10 um in height
total area = 4.68 cm^2, total heigh = 20 um (two layers)
$$A/I = 4.7 / (0.002) = 2.34 e+3 cm$$