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• Large-scale lensing: Σmν, w

• Small-scale lensing: w, Σmν

• Correlation between lensing and 
tracers: 
See Marcel’s talk (next)

• Delensing: r, Neff
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Figure 2–3: Visualizing the impact on cosmological power spectra of varying the
total neutrino mass. Each curve represents a change in the total neutrino mass of
0.1 eV. At top left, the impact on the matter power spectrum is shown, with the
top-right panel showing the relative change, in comparison to the no-mass case. The
massive neutrinos wash out structure on scales k > 0.01 h Mpc�1. Similar behavior is
seen in the two-dimensional CMB lensing power spectra (middle row). The bottom
row shows the impact on the CMB temperature power spectrum.

20

Figure 14. The e↵ect of massive neutrinos on the matter power spectrum and CMB lensing power
spectrum. Top Left: The e↵ect of neutrino mass on the matter power spectrum. Top Right: The change to
the matter power spectrum relative to the case with massless neutrinos. Bottom Left: The projected matter
power spectrum observed through CMB lensing shows the same suppression with neutrino mass. Bottom

Right: The relative change to the lensing potential power spectrum.

The lower limit on ⌦⌫h
2 is a reflection of the lower limit on the sum of the masses,

P
m⌫ & 58 meV, that

is determined from neutrino oscillation experiments [278]. This sets a clear observational target for future
observations.

Any probe of Pmm at late times is, in principle, sensitive to the sum of the neutrino masses. The question
we will be most interested in is whether a given probe is sensitive to the lower limit,

P
m⌫ = 58meV (or

⌦⌫h
2 = 0.0006) under realistic circumstances. In this subsection, we will discuss the two methods through

which CMB-S4 can directly constrain the neutrino mass, CMB lensing and SZ cluster abundances. We will
also compare these observables to other cosmological probes of the neutrino mass from upcoming large scale
structure surveys such as DESI and LSST.

CMB-S4 Science Book

CMB-S4 science 
book  
(AvE)
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future observations. We will consider the possibility of reaching ` < 30 with CMB-S4 in the same category
as other future experiments that hope to improve the measurement of ⌧ .

The current best constraint on ⌧ comes from Planck [320], roughly corresponding to an external prior of
⌧ = 0.06 ± 0.01. We see in Figure 15 that this prior is su�cient to reach �(

P
m⌫) < 30 meV for a wide

range of experimental configurations. On the other hand, we also note that there is little improvement with
decreased noise or beamsize as we saturate at �(

P
m⌫) ⇠ 26 meV, even if we increase fsky > 0.4. Of course,

the reason is that we are limited by the ⌧ -degeneracy.

Figure 16. Forecasts for �(

P
m⌫) assuming ⇤CDM +

P
m⌫ using CMB-S4 and DESI BAO. We vary

sensitivity in µK-arcmin and ⌧ -priors, ⌧ = 0.06 ± �(⌧) with the contours showing 1� errors for
P

m⌫ . We
fixed the resolution using 1’ beams and set f

sky

= 0.4. The white and blue dashed lines correspond to the
low-` cosmic variance limit and Planck Blue Book values respectively.

In order to reach the 3� target, �(
P

m⌫) < 20 meV, one needs a better measurement of ⌧ . As shown in
bottom panel of Figure 15, we can reach �(

P
m⌫) ⇡ 20 meV for a variety of plausible configurations of

CMB-S4 with Planck’s designed reach in sensitivity, a measurement at the level of �(⌧) = 0.006. However,
as before, we see that there are only moderate improvements coming from lower noise or smaller beams. A
similar limitation applies to other cosmological probes, as seen in Table 3-1, which also saturate at a similar
sensitivity.

More generally, improved measurements of ⌧ and H0 may become available before, during or after CMB-S4.
We therefore also examine impacts of measurements even further in the future in evaluating the value of
the legacy data from CMB-S4. There are ground-based CMB instruments [24, 321] designed to observe very
large angular scales, with possible reach to constrain ⌧ ; the CLASS experiment is forecasted to reach �(⌧) '
0.004 [322], for example. Space missions [323, 324] are proposed to constrain the primordial gravitational
waves through the so-called reionization bump during the 2020s; they are designed to reach sensitivity well
beyond that required to achieve a cosmic-variance limited ⌧ measurement, �(⌧) ⇠ 0.002. Measurement of

CMB-S4 Science Book

CMB-S4 science book  
(Joel Meyers)

with DESI BAO

Planck 
Blue Book

Cosmic  
Variance Limit
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Autospectrum state of the art
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What is possible with PICO?

651σ

483σ

Planck Collaboration: Gravitational lensing by large-scale structures with Planck

primordial B-modes there are five possible estimators, denoted
by �̂TT , �̂T E , �̂EE , �̂EB, and �̂T B, which are based on various cor-
relations of the CMB temperature (T ) and polarization (E and
B). In addition, we can form a minimum-variance estimator that
combines all five estimators, which we denote as �̂MV. In Fig. 1
we plot the lens reconstruction noise levels for these estimators.
The most powerful estimator is TT , although the T E and EE
estimators are also useful on large angular scales.
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Fig. 1 Lens reconstruction noise levels N��L for the TT , T E, EE,
EB, and T B estimators applied to the SMICA full-mission CMB
map. The noise level for their minimum-variance combination
(MV) is also shown. The fiducial⇤CDM theory power spectrum
C��,fid

L used in our Monte Carlo simulations is plotted as the black
solid line.

The quadratic lensing estimators take inverse-variance fil-
tered CMB multipoles as input. We obtain these using a filter that
masks the Galaxy and point sources, and also bandpass filters
the data in harmonic space to 100  `  2048. For our baseline
analysis, we start with the masks used in the analysis of Planck
Collaboration XVII (2014), with a Galaxy mask that removes
30.2 % of the sky and a point-source mask that removes an ad-
ditional 0.7 % of the sky. This removes the brightest Sunyaev-
Zel’dovich (SZ) clusters as described in Planck Collaboration
XVII (2014); contamination of the lensing reconstruction from
residual unresolved SZ is expected to be at the percent level
for Planck (van Engelen et al. 2014), even without compo-
nent separation.† This residual signal, and that from unresolved
point-sources, is further reduced by a correction that we make
to the power spectrum of the reconstructed lensing potential
(see Appendix A.3). Finally, we apply SMICA-specific temper-
ature and polarization masks described in Planck Collaboration
IX (2016). Combining all three sets of masks leaves a total of
67.3 % of the sky for analysis.

† We mask clusters with S/N � 5 in the Planck cluster catalogue
that accompanied the 2013 release (PSZ1; Planck Collaboration XXIX
2014). The mass limit is redshift dependent, with a high-redshift limit
at 80 % completeness of M500 ⇡ 6 ⇥ 1014 M�. If we conservatively
adopt this mass limit (we certainly mask low-redshift clusters to lower
masses), the results of van Engelen et al. (2014) suggest that the SZ
trispectrum at 143 GHz gives a positive bias of at most a few percent
in the reconstructed lensing power spectrum for multipoles L < 2000,
while the lensing-SZ-SZ bispectrum gives a negative bias of similar
size. The SZ signal is much smaller in the 217 GHz temperature data,
which is around the null of the (thermal) SZ e↵ect.

We estimate the power spectrum of the lensing potential C��L
using the auto- and cross-spectra of the quadratic lensing esti-
mators.‡ These spectra probe the 4-point function of the lensed
CMB, specifically the connected (trispectrum) part of the 4-point
function that is sourced by lensing. They also contain contribu-
tions from the disconnected part of the 4-point function (which
is non-zero even in the absence of lensing e↵ects). We estimate
this contribution and subtract it, as well as several other smaller
bias terms, obtaining an estimate Ĉ��L of the power spectrum.
This procedure is discussed in Appendix A.3. For cosmologi-
cal parameter constraints, we use a Gaussian log-likelihood in
bandpowers of the estimated lensing power spectrum, given by

� 2 logL� = BL
i (Ĉ��L �C��,thL )

h
⌃�1
ii j BL0

j (Ĉ��L0 �C��,thL0 ). (3)

Here, bins are indexed by i and j; BL
i is the bandpower bin-

ning function for the ith bin, and ⌃ is a covariance matrix for
the bin estimates. Paired upper/lower indices are summed over.
The C��,thL is the theoretical expectation value of the estimated
Ĉ��L for the set of cosmological and nuisance parameters under
consideration. This generally di↵ers from the theory spectrum
C��L at the same cosmological parameters due to the way that our
power spectrum estimates are normalized, and corrected for ad-
ditional trispectrum couplings, with a fiducial model. Both the
binning function and C��,thL are discussed in Appendix C. The
binning function is chosen to have unit response to a fiducial
theory spectrum C��,fid

L , and so we denote

Â�i = BL
i Ĉ��L (4)

as the amplitude of the power spectrum for a particular bin rela-
tive to the fiducial expectation (with Â = 1 for Ĉ��L = C��,fid

L ).
To characterize the variance of our lensing potential esti-

mates, as well as to estimate several bias terms, we use simulated
Planck maps. These are based on the Full Focal Plane 8 (FFP8)
Monte Carlo simulation set described in Planck Collaboration
XII (2016). As discussed there, the Planck maps were e↵ectively
renormalized by approximately 2–3% in power in the time be-
tween the generation of FFP8 and the final Planck full-mission
maps. To account for this, we rescale the CMB component of the
simulations by a factor of 1.0134 before analysis. The FFP8 sim-
ulations do not include contributions from residual foregrounds
(Galactic dust, as well as unmasked point sources), and also un-
derestimate the noise power spectra by several percent at high-`.
We account for this missing power simply by adding coloured
Gaussian noise to the simulations to make their TT , EE, and
BB power spectra agree with the data. This approach implicitly
assumes that any non-Gaussianity of these residual components
does not couple significantly to our lensing estimates. We per-
form consistency tests in Sect. 4 to check the validity of these
assumptions.

Throughout this paper we use a spatially-flat fiducial cos-
mology with baryon density given by !b = ⌦bh2 = 0.0222,
cold dark matter density !c = ⌦ch2 = 0.1203, neutrino en-
ergy density !⌫ = ⌦⌫h2 = 0.00064 (corresponding to two mass-
less neutrinos and one massive with mass 0.06 eV), Hubble con-
stant H0 = 100h km s�1 Mpc�1 with h = 0.6712, spectral in-
dex of the power spectrum of the primordial curvature perturba-
tion ns = 0.96, amplitude of the primordial power spectrum (at
k = 0.05 Mpc�1) As = 2.09 ⇥ 10�9, and Thomson optical depth

‡ In this paper, we use multipole indices LM for the lens reconstruc-
tion, reserving multipole indices `m for the CMB fields.

3

Planck 2015 PICO forecast
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Why is PICO better?124 CMB Lensing
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Figure 47. Noise per mode in the lensing field for di↵erent lensing estimators at L = 300. Left panel is for
1 arcmin resolution, and right panel is for 3 arcmin resolution. For a 1 and 3 arcmin resolution experiment,
the EB polarization estimator yields lower noise than the temperature estimator, below 4µK-arcmin and
5µK-arcmin noise in temperature respectively.

7.2.2 Lensing Power Spectrum

The power spectrum of reconstructed CMB lensing maps is a measure of the matter power spectrum
integrated over redshift. The lensing power spectrum has a broad redshift response kernel, with most of
the contribution coming from z ⇠ 1 � 5, with a peak at z ⇠ 2 (see Figure 50). Most of the scales probed
by the lensing power spectrum are on su�ciently large scales that they are mainly in the linear regime. As
such, the lensing power spectrum is sensitive to physics which a↵ects the growth of structure on large scales
and at high redshift, such as the mass of the neutrinos.

The latest measurements of the CMB lensing autospectrum, as of early 2016, are shown in Figure 48. The
first detections were obtained by the Atacama Cosmology Telescope (ACT; [529]) and South Pole Telescope
(SPT; [530]) teams, who analyzed maps of several hundreds of square degrees yielding precisions on the
lensing power spectrum of approximately 25% and 18% respectively. The Planck collaboration has since
provided all-sky lensing maps whose precision on the power spectrum amplitude is approximately 4% in the
2013 data release and 2.5% in the 2015 data release. The first detections of the lensing autospectrum using
CMB polarization, which is ultimately a more sensitive measure of lensing for low-noise maps, have also
been obtained [531, 532, 533].

There has been rapid improvement in these measurements over the period of just a few years. Early detections
of the CMB lensing autospectrum were not sample variance limited over a broad range in L and were only
covering a relatively small sky area; the power spectrum of the noise in the CMB lensing reconstruction
in the 2015 Planck data release is approximately equal to the lensing power spectrum only at its peak of
L ⇠ 40, but smaller scales are noise-dominated. Lensing reconstructions from current ground-based surveys
(like SPTpol, ACTPol, POLARBEAR) are strongly signal-dominated below L ⇠ 200 and noise-dominated
on smaller scales. However, they have been obtained over relatively small sky areas of several hundreds
of square degrees. A ground-based survey such as CMB-S4, with wide sky coverage, low-noise, and high

CMB-S4 Science Book

CMB-S4 science book (AvE)

• Polarization rather 
than Temperature

• Max-like/iterative 
estimators

Lensing noise vs. instrumental noise
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FIG. 1: Fractional contributions from E(l) and B(l) at l = |l| to the lensing reconstruction at
L 2 {300, 800, 1500, 2000} (four panels, where in each panel l = L is marked with a dotted line), for the fiducial

noise and resolution used in this paper. At the lower L the EE reconstruction (dashed lines) is mainly from
squeezed shapes with l � L, however the EB estimator the E� and especially B-mode signal is important at much
lower l (solid lines). Mathematically what is plotted is A

ij
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1

) / R
l

1

d'

l1fij(l1, l2)Wij

(l
1

, l

2

) as a function of l

1

, or
equivalently for l

2

in the case of the second field in the quadratic estimator, normalized to sum to unity.

function indicate that the contributions to the estimators come from rather di↵erent configurations: the EE estimator
has a lot of signal in squeezed shapes with L ⌧ l

1

, l

2

and hence l

1

⇠ l

2

, corresponding to reconstructing the large-scale
lensing shear and convergence from the e↵ect on the local small-scale power spectrum; however for the EB estimator,
sin(2'

l1l2) ⇠ 0 for l

1

⇠ l

2

, and instead the dominant signal comes from correlating lensing-induced B modes on a
scale comparable to the lensing mode. This leads to a relatively modest reconstruction noise correlation between the
estimators, especially on large scales, so the combination can significantly reduce the variance if the noise level is not
low enough that the EB mode estimator dominates (because there are no unlensed small-scale B modes to contribute
to the estimator variance). See Fig. 1 for the contributions to the lensing signal at various di↵erent scales.

B. Cut sky and E/B leakage

The CMB E and B modes are defined as a harmonic transform of the Q and U Stokes parameters without a
boundary. In the presence of a boundary (as on cut sky maps), the harmonics are no longer orthogonal, causing
power to be leaked from the dominant E mode into the subdominant B mode if they are naively evaluated over only
the observed patch of sky. A number of methods have been developed to remove the spurious B mode power originating
from non-periodic boundary conditions on small patches of sky, e.g. [2, 22–24]. A clean separation into pure-B modes is
e↵ectively optimal for small noise levels where leakage from E is dominating the variance of the contaminated observed
B modes. For intermediate noise levels inverse variance filtering would appropriately down weight the contaminated
modes in an optimal way, and a full implementation of a nearly-optimal lensing reconstruction method [6, 8, 9] should
therefore optimally handle the mixing e↵ect at the expense of a very numerically costly inverse-variance filtering step.

In this paper we focus on suboptimal but simple methods for handling the cut sky as used by some recent ground-
based observations, where a window function W (x) is used to apodize the observed area smoothly to zero at the
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B. Cut sky and E/B leakage

The CMB E and B modes are defined as a harmonic transform of the Q and U Stokes parameters without a
boundary. In the presence of a boundary (as on cut sky maps), the harmonics are no longer orthogonal, causing
power to be leaked from the dominant E mode into the subdominant B mode if they are naively evaluated over only
the observed patch of sky. A number of methods have been developed to remove the spurious B mode power originating
from non-periodic boundary conditions on small patches of sky, e.g. [2, 22–24]. A clean separation into pure-B modes is
e↵ectively optimal for small noise levels where leakage from E is dominating the variance of the contaminated observed
B modes. For intermediate noise levels inverse variance filtering would appropriately down weight the contaminated
modes in an optimal way, and a full implementation of a nearly-optimal lensing reconstruction method [6, 8, 9] should
therefore optimally handle the mixing e↵ect at the expense of a very numerically costly inverse-variance filtering step.

In this paper we focus on suboptimal but simple methods for handling the cut sky as used by some recent ground-
based observations, where a window function W (x) is used to apodize the observed area smoothly to zero at the

Which CMB modes need to be 
measured?
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Noise levels and delensing

• Lensed B-modes give a noise floor of 5 uK-arcmin

• Hu & Okamoto QE non-optimal

• Iterate! Reconstruction and Delensing strongly linked
formal way, our forecasting procedure is to iterate the pair of equations

N��
` =

2

4 1

2` + 1

X

`1`2

|fEB
`1`2`|2

 
1

CBres
`1

+ NBB
`1

! 
(CEE

`2
)2

CEE
`2

+ NEE
`2

!3

5
�1

(18)

CBres
`1

=
1

2`1 + 1

X

`2`

|fEB
`1`2`|2

"
CEE
`2 C��

` �
 

(CEE
`2

)2

CEE
`2

+ NEE
`2

! 
(C��

` )2

C��
` + N��

`

!#
(19)

to convergence, starting by taking CBres
` = CBlen

` in the first iteration.

We have arrived at this forecasting procedure via a heuristic argument, but we can test its validity

by comparing with the results in Table I of [16], which show values of CBres
` obtained from Monte

Carlo simulations of an iterative delensing estimator, for a wide range of instrumental parameters.

We find that all entries in the table agree at the ⇡10% level, showing that this simple heuristic

procedure actually provides rather accurate forecasts. Given the implementational complexity and

computational cost of the iterative delensing estimator, this forecasting procedure is one of the main

results of this paper. Using the optimizations from Appendix B, iterative delensing forecasts can be

generated in a few CPU-seconds.
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limit (from delensing residuals alone) to how well r can be measured.

In Fig. 3, we show forecasts for “internal” lens reconstruction using small-scale CMB polarization,

for varying noise level and beam and taking `max = 4000 throughout. Delensing can significantly
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“Delensing beyond the B modes”
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Figure 1: The e↵ect of lensing and delensing on the temperature two-point correlation function,

C

T

(r). The top panel shows the lensed and unlensed curves, as well as the delensed curves for

various experimental noise configurations using the tools developed in this work. Specifically, the

Stage II, III, and IV experiments contain noise levels of 10, 5, and 1 µK-arcmin respectively. The

bottom panel shows the change relative to the unlensed correlation function. We see that lensing

smoothes the BAO feature in the CMB and is restored by delensing, much like what is done with

BAO-reconstruction at lower redshifts [31].

the unlensed CMB in the limit of no noise. This procedure is naturally generalized to account

for the noise in the temperature, polarization, and lensing maps. We are careful to use filtered

maps as part of the delensing procedure, which we show is necessary for improving parameters

constraints. In principle, one can then produce the all-orders delensed spectra. In practice, the

exact expressions are di�cult to calculate due to the non-local relationship between the observed

data and the true location of the underlying lenses. Fortunately, on the scales of interest, the

lensing potential varies slowly compared to the CMB maps and these non-local e↵ects can be

neglected or included in a perturbative expansion. This will allow us to provide simple expressions

for the delensed power spectra that we also implement numerically.

The most immediate application of these all-orders results is for forecasting future CMB

experiments. We include forecasts covering a range of possible experimental configurations to

illustrate the impact of delensing on Ne↵ and other cosmological parameters. Our goal is to

understand to what degree forecasts using unlensed spectra are achievable given realistic noise

levels in the lensing map. This is especially important for forecasts of Ne↵ for CMB Stage IV,

which are tantalizingly close to the theoretical threshold of �Ne↵ = 0.027 (see e.g. [32–37] for

discussion). We will also show that delensing reduces the covariance between the lensing power

spectrum and the observed temperature and polarization spectra. Proper forecasting must thus

account for both the delensed spectra and covariance matrix [38, 39].

This paper is organized as follows. In Section 2, we present the theoretical framework for

2
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Delensing - recent detections
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Figure 5. This figure shows the spectrally-combined B-mode bandpowers before (•) and after delensing (�). The error bars represent
the variance of realistic, noisy simulations. To guide the eye, the solid line shows the theory spectrum (lensed B modes) and the orange
dashed line denotes the expectation value of the delensed spectrum from 100 simulations. In order to match the data multipole range
used in this work, we only plot the simulation results for multipoles ` > 300. We find that delensing reduces the amplitude of the B-mode
spectrum by 28%.

maps shown in Figure 3 and the respective average auto-
spectra shown in Figure 4. Without this filter, extra
noise power would be present in the B-mode templates
and would cause their auto-spectra to far-exceed that of
the lensing B-mode spectrum.

We test the e�cacy of our filter on simulations by com-
paring the auto-spectrum of each B-mode template with
the cross-spectrum of the B-mode template with B̂true.
In all cases, the mean in ` of these auto-spectra are . 3%
larger than the mean of these cross-spectra. This means
that there is very little “noise” in the templates – almost
all of the power in the B-mode templates is correlated
with B̂true. Thus noise in the B-mode templates adds
a negligible amount of noise bias to the delensed spec-
tra compared to our statistical error bars. The delensing
e�ciency of these templates is discussed further in Sec-
tion 8.

6. RESULTS

This section presents the main results of the paper,
starting with the expected delensing e�ciency from sim-
ulations and ending with the delensed SPTpol B-mode
power spectrum.

6.1. Expectation from Simulations

Before looking at the data, we calculate the expected
level of delensing using the simulations described in Sec-
tion 5. The “realistic template” B̂

Ē,�

CIB

is used to delens
the corresponding noisy simulated B maps. The mean
delensed spectrum from 100 simulations is shown in Fig-

ure 5 by the orange dashed line. This is the expectation
value of the delensed power spectrum.

Using these simulations, we fit the mean bandpowers
from the 100 simulations to an Alens-scaled BB spectrum
for both the nominal and the delensed case. The Alens-
scaled BB spectrum used here does not include fore-
grounds even though they are present both in the sims
and in the data. We test the foreground modeling in
Section 6.2.1. We find that delensing is expected to re-
duce the best-fit amplitude from Alens = 1.09 ± 0.29 to
Ares

lens = 0.87 ± 0.28. The expected delensing e�ciency,
calculated as the value of ↵ averaged over these simula-
tions, is

h↵isims = 0.23 ± 0.10. (12)

In the limit of the B-mode measurement having zero
noise, the fractional reduction in lensing B-mode power
through delensing corresponds to the fractional reduction
in lensing B-mode sample variance. In this work, since
the variance of the B-mode measurement is dominated
by the instrument noise, we do not expect a significant
reduction in the variance of the delensed B-mode band-
powers. This can be seen already from the marginally
reduced uncertainty of Ares

lens compared to Alens in simu-
lations.

6.2. Data

The SPTpol B-mode maps described in Section 4.2 are
delensed using the B-mode template described in Sec-
tion 4.3. The nominal and delensed B-mode bandpowers
are shown in Figure 5. It is clear by eye that the delens-

SPT BB: Manzotti, Story, Wu+2017
Btempl ~ ESPT x φHerschel
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Planck BB: Carron+, φinternal

Delensing the CMB temperature 
spectrum 

• De-lens using the CIB as a 
mass proxy 

• Dust cleaning using 
frequency combination and 

masking 

• 20% reduction in lensing 
(depending on definition of 

reduction) 

• Shows consistency between 
Planck peak smoothing and 

lensing maps
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Planck TT: Larsen+, φPlanck-CIB

Planck TT: Carron+, φinternal



Alexander van Engelen, CITA

Possible concerns
• Dust, synchrotron

Qdust Udust κ(EdustBdust)

Vansyngel+ dust simulation
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Bias to lensing autospectra
from Planck FFP8 sims

CORE lensing paper (Challinor, Allison++2017) arXiv:1707.02259

Figure 12. Top left: Mean lensing power spectrum reconstructions over five mock CORE observations
at 150 GHz, including realistic noise, with no dust contamination. The lensing power spectrum (black

solid line) is recovered in an unbiased fashion (see also Table 1). Dashed lines show the N (0)

L Gaussian

noise power in the reconstructions, and dotted lines are the small N (1)

L biases. The measured spectra
are corrected for both such biases. The lensing detection significance of the EB reconstruction has
about twice the power of TT in the no-dust case. Top right: As top left, but with the dust field added
before reconstruction, and including the dust power in the lensing filters. The bias from dust is clear
by eye in the temperature reconstruction (red points). With this filtering for CORE, we expect a
roughly 15 % bias for the TT estimator and negligible bias for EB. Note that these results are specific
to this bright dust field, and assume no Galactic foreground removal. It can be seen that uncertainties
are inflated relative to the no-dust case due to the additional variance of the dust component. Bottom:
As top right, but without including the dust power in the filtering. In this case the EB reconstruction

is highly sub-optimal (the N (0)

L Gaussian noise power is o↵ the scale of the plot) and biased. There
is little change in the TT reconstruction as the dust power is subdominant to the CMB power. In

all panels, the error bars are analytic estimates from N (0)

L and C��
L and have been scaled to reflect

f
sky

= 0.7. The same CMB and noise realisations are used in all panels.

biased and sub-optimal reconstructions (see Table 1). The minimum CMB multipole used is
lmin = 12 corresponding to the longest non-constant mode supported on the patch. The mean
auto-power spectra of the TT and EB reconstructions are shown in Fig. 12. The realisation-

dependent N (0)
L bias and an analytic approximation of the sub-dominant N (1)

L bias have been
subtracted from the raw power spectrum to obtain an unbiased estimator (in the absence of
non-Gaussian foregrounds) of the underlying lensing power.

– 28 –

No dust Bright dust field Bright dust field
(inc. dust power in filters)

TT ⇥ TT A = 1.002 ± 0.008 A = 1.169 ± 0.008 A = 1.158 ± 0.008
EB ⇥ EB A = 0.997 ± 0.004 A = 1.615 ± 0.030 A = 0.999 ± 0.006

Table 1. Fits to the lensing power spectrum amplitude A for mock CORE observations at 150GHz
(see Fig. 12). Fits are performed over the multipole range 2  L < 3000 for the recovered lensing
power spectrum from the TT and EB estimator. The central value quoted is the mean over five
simulations, while the error is appropriate to a single realisation and has been scaled to reflect a full-
sky analysis (f

sky

= 0.7). The standard error on the mean of A is a factor 3.1 larger than the errors
shown. We see that without dust the input amplitude can be recovered to high accuracy. Performing
the reconstruction over a dusty region induces bias in both estimators and additional variance for EB.
When including the dust power in the lensing filters, the bias in the power from the EB estimator
is removed, but a 15 % bias remains for the TT estimator since including the dust power makes only
a small change to the temperature filter on the (small) scales that dominate the TT reconstruction.
Note that no foreground removal is assumed in this analysis.

We note that here we scale the 353GHz dust emission to an e↵ective 150 GHz observing
channel using a modified black body spectrum with temperature Tdust = 21 K and spectral
index �dust = 1.5. We add this scaled dust component to noisy, lensed CMB maps with noise
level appropriate to the combination of CORE ’s CMB channels, i.e., the six channels in the
range 130–220 GHz, used for forecasts throughout this paper. This procedure is more akin
to how a ground-based experiment with sensitivity around 2 µK arcmin at 150 GHz would
observe and analyse the CMB sky. Since dust emission rises strongly with frequency, the
actual level of dust emission in the six-channel combination, based on inverse-noise-variance
weighting, would be around a factor of 1.5 higher than at 150GHz assuming no component
separation.

We distill the e↵ect of the dust bias by fitting a lensing amplitude parameter A, which
scales the amplitude of the fiducial lensing power spectrum, to the estimated power spectrum.
Any statistically-significant deviation from unity in this parameter (A 6= 1) represents biasing
from the dust emission which, if unmodelled, would directly impact any cosmological inference
from the lensing measurement. For example, the e↵ect of neutrino mass is to suppress the
lensing power spectrum (Sec. 5); a bias in the lensing amplitude A would therefore directly
propagate into crucial cosmological parameters. To keep the bias well below the statistical
error on a measurement of the lensing amplitude, we require biases below O(0.1) % for an
EB-based analysis.

The principal results of this analysis are shown in Table 1. For this region of the sky,
with its atypically bright dust emission, the bias to CORE observations is around 15 % in the
temperature reconstruction, but much smaller for EB (below the approximately 2 % level to
which we have sensitivity with only the five simulations used here). This clarifies the need for
CORE to perform lensing reconstruction on foreground-subtracted temperature maps. The
addition of dust has little e↵ect on the lensing detection significance for the TT estimator
since the dust power is small compared to the CMB power. For the same reason, including
dust power in the lensing filters is ine↵ective in mitigating the dust bias for temperature
reconstructions. In this case, explicit high-pass filtering of the data may be more e↵ective.
In contrast, the dust power is comparable to, or larger than, the CMB polarization power
across a wide range of scales, and therefore has a stronger e↵ect on the lensing reconstruction

– 29 –
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CMB T correlation function
CMB only

AvE+ in prep 
Preliminary

Delensing with dust:
Vansyngel sim in both φ and B modes
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CMB onlyCMB + Dust

Delensing with dust:
Vansyngel sim in both φ and B modes
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• Neutrino mass will soon be tau-limited - PICO gives CVL tau

• Lensing sensitivity comparable to ground-based survey on 
2030 timescale

• Delensing is crucial for B modes - PICO should do this 
independently

• Dust/Synchrotron on small scales could be important -> 
frequency coverage

Summary: 
PICO would provide unique results for 

CMB lensing


