CMB lensing with PICO

Alexander van Engelen Canadian Institute for Theoretical Astrophysics University of Toronto

Lensing/Delensing

Lensing/Delensing

• Delensing: r, N_{eff}

- Large-scale lensing: Σm_v , w
- Small-scale lensing: w, Σm_v

 Correlation between lensing and tracers: See Marcel's talk (next)

Neutrino mass constraints

Autospectrum state of the art

Updated from Sherwin, AvE, ++2017

What is possible with PICO? Planck 2015 PICO forecast

Why is PICO better?

Lensing noise vs. instrumental noise

- Polarization rather than Temperature
- Max-like/iterative estimators

Which CMB modes need to be measured?

PICO v3 noise curves

Noise levels and delensing

- Lensed B-modes give a noise floor of 5 uK-arcmin
- Hu & Okamoto QE non-optimal
 - Iterate! Reconstruction and Delensing strongly linked

$$\begin{split} N_{\ell}^{\phi\phi} &= \left[\frac{1}{2\ell+1} \sum_{\ell_{1}\ell_{2}} |f_{\ell_{1}\ell_{2}\ell}^{EB}|^{2} \left(\frac{1}{C_{\ell_{1}}^{B_{\text{res}}} + N_{\ell_{1}}^{BB}} \right) \left(\frac{(C_{\ell_{2}}^{EE})^{2}}{C_{\ell_{2}}^{EE} + N_{\ell_{2}}^{EE}} \right) \right]^{-1} \\ C_{\ell_{1}}^{B_{\text{res}}} &= \frac{1}{2\ell_{1}+1} \sum_{\ell_{2}\ell} |f_{\ell_{1}\ell_{2}\ell}^{EB}|^{2} \left[C_{\ell_{2}}^{EE} C_{\ell}^{\phi\phi} - \left(\frac{(C_{\ell_{2}}^{EE})^{2}}{C_{\ell_{2}}^{EE} + N_{\ell_{2}}^{EE}} \right) \left(\frac{(C_{\ell}^{\phi\phi})^{2}}{C_{\ell}^{\phi\phi} + N_{\ell}^{\phi\phi}} \right) \right] \end{split}$$

starting by taking $C_{\ell}^{B_{\text{res}}} = C_{\ell}^{B_{\text{len}}}$ in the first iteration.

Noise levels and delensing

Delensing

"Delensing beyond the B modes"

CMB T correlation function

Green, Meyers, AvE 2016

Delensing - recent detections

SPT BB: Manzotti, Story, Wu+2017

Planck TT: Larsen+, ΦPlanck-CIB

Planck BB: Carron+, *q*internal

Possible concerns

• Dust, synchrotron

-0.000300020.0020.0030.0030.000**0**500000.0005

Vansyngel+ dust simulation

Bias to lensing autospectra from Planck FFP8 sims

CORE lensing paper (Challinor, Allison++2017) arXiv:1707.02259

Delensing with dust:

Vansyngel sim in both ϕ and B modes

Delensing with dust:

Vansyngel sim in both ϕ and B modes

Summary: PICO would provide unique results for CMB lensing

• Neutrino mass will soon be tau-limited - PICO gives CVL tau

 Lensing sensitivity comparable to ground-based survey on 2030 timescale

- Delensing is crucial for B modes PICO should do this independently
 - Dust/Synchrotron on small scales could be important -> frequency coverage