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Channel Beam Ndet ∆T ∆P ∆I ∆I ∆y × 106 PS (5σ)
[GHz] [arcmin] [µK.arcmin] [µK.arcmin] [µKRJ.arcmin] [kJy/sr.arcmin] [ySZ.arcmin] [mJy]

60 17.87 48 7.5 10.6 6.81 0.75 −1.5 5.0
70 15.39 48 7.1 10.0 6.23 0.94 −1.5 5.4
80 13.52 48 6.8 9.6 5.76 1.13 −1.5 5.7
90 12.08 78 5.1 7.3 4.19 1.04 −1.2 4.7
100 10.92 78 5.0 7.1 3.90 1.20 −1.2 4.9
115 9.56 76 5.0 7.0 3.58 1.45 −1.3 5.2
130 8.51 124 3.9 5.5 2.55 1.32 −1.2 4.2
145 7.68 144 3.6 5.1 2.16 1.39 −1.3 4.0
160 7.01 144 3.7 5.2 1.98 1.55 −1.6 4.1
175 6.45 160 3.6 5.1 1.72 1.62 −2.1 3.9
195 5.84 192 3.5 4.9 1.41 1.65 −3.8 3.6
220 5.23 192 3.8 5.4 1.24 1.85 . . . 3.6
255 4.57 128 5.6 7.9 1.30 2.59 3.5 4.4
295 3.99 128 7.4 10.5 1.12 3.01 2.2 4.5
340 3.49 128 11.1 15.7 1.01 3.57 2.0 4.7
390 3.06 96 22.0 31.1 1.08 5.05 2.8 5.8
450 2.65 96 45.9 64.9 1.04 6.48 4.3 6.5
520 2.29 96 116.6 164.8 1.03 8.56 8.3 7.4
600 1.98 96 358.3 506.7 1.03 11.4 20.0 8.5

Array 2100 1.2 1.7 0.41

Table 1. Proposed CORE frequency channels. The sensitivity is calculated for a 4-year mission,
assuming ∆ν/ν = 30% bandwidth, 60% optical efficiency, total noise of twice the expected photon
noise from the sky and the optics of the instrument being cooled to 40 K. This configuration has 2100
detectors, about 45% of which are located in CMB channels between 130 and 220 GHz. Those six
CMB channels yield an aggregate CMB sensitivity in polarisation of 2µK.arcmin (1.7µK.arcmin for
the full array).

channels ranging from 255 to 600 GHz serve to monitor dust emission, and to map cosmic
infrared background (CIB) anisotropies that can serve as a tracer of mass for “de-lensing”
CMB polarisation B modes (25). The telescope size (1.2-m aperture) is such that the angular
resolution is better than 18′ over the whole frequency range, so that all the frequency channels
can be used for component separation down to this angular resolution. In the cleanest regions
of the sky, the CMB will be mapped in eight frequency channels or more, with an angular
resolution ranging from ' 5′ to 10′ and a sensitivity to polarisation in the 5–8µK.arcmin
range for each channel independently.

The geometry of the spacecraft, displayed in figure 2, is as symmetric as possible to avoid
any thermal effect due to the modulation of the solar flux on the spacecraft while it spins to
scan the sky. The main elements of the payload module (PLM), telescope, screens and baffles,
will be kept cold by passive cooling, to minimise the requirements on the active cryogenic
chain. Passive cooling of the PLM to approximately 40 K will be achieved by keeping the
payload in the shadow of the service module (SVM), and thermally decoupling the PLM
from the SVM with a set of highly reflective V-grooves (a conceptual design similar to that
succesfully used on Planck , 26), while the main payload conical screen radiates towards free
space to compensate for conductive heat inflow from the SVM.

Although the design and performance of the instrument do not critically depend on
the payload temperature actually achieved (which could be as high as 90 K or more with
acceptable impact on the mission performance), the low payload temperature that is achieved
by passive cooling also reduces the background on the detectors, resulting in better sensitivity
overall, in particular in the frequency channels above 220 GHz.

CORE will be in orbit around the second Sun-Earth Lagrange point (L2), and will scan
the sky with a dedicated scanning strategy combining a fast spin (Tspin ' 2 minutes) around
the spacecraft principal axis of symmetry, a slower precession (Tprec ' 4 days) around an axis

– 5 –


