Cross Dragone, D = 100cm, F#=4.5, F0V = 10 deg, alpha = 40, beta = 55

Shaul Hanany, Xin Zhi Tan, Qi Wen, Karl Young Oct 3rd, 2017

Last week:

- D=140 cm, F# = 3, FOV = +/-5 deg
- fold, see reflection from tertiary mirror

• This week:

- try to increase FOV to +/- 10 deg
- larger FOV → larger F# (4.5) → smaller aperture (1 m) & larger envelope (extended shields)
 - physical DLFOV area (normalized in Fλ) ~ (D * FOV)^2
 - a factor of ~2

$FOV = +/- 10^{\circ}$

 $FOV = +/- 10^{\circ}, F\# = 4.5$

 $FOV = +/- 10^{\circ}, F\# = 4.5, D = 140 cm$

 $FOV = +/- 10^{\circ}, F\# = 4.5, D = 100 cm$

No extension ($\alpha = 22^{\circ}$)

Extended shields ($\alpha = 40^{\circ}$)

$FOV = +/- 10^{\circ}$, D = 100 cm, extended shields

Still, reflection!

Polarization weight, 4K system

- Edge tapers:
 - 10, 21, 43 dB
 - 2 F*lambda spacing
- 1.4 meter system, f-number = 3.0
- 1 meter system, f-number = 4.5
- Entire system at 4K
- Full sky and 4 yr mission at 100% observing.
- 7k / 11k detectors
- Focal plane limited by vignetting at low frequencies.
 - This limited area for low frequency pixels.
 - Decreased the number of pixels in lowest 2 bands relative to the higher bands.

Summary

- For Cross Dragone systems, folding can provide larger DLFOV area given the envelope constraint.
 Tradeoff between aperture size D and FOV.
- D = 1m, F = 4.5 can only fit if there is extended shields. Also larger alpha angle.
- The reflection from tertiary mirror seems hard to eliminate by finding better orientations.