CMBP Galactic Science

Introductory Materials L. Fissel, D. Chuss

Mission Team is studying two options/parts

- Imager: Multi-frequency focal plane. Starting point: EPIC-IM (from previous decadal survey)
- Spectrometer: A Fourier-transform
 Spectrometer based on the PIXIE design (but larger)

EPIC-IM

4 K Telescope Option 30 K Telescope Option Freq θ_{FWHM} $\mathbf{W_p}^{-1/2}$ N_{bol}^a δT_{pix}^{e} $N_{bol}^{\quad \ a}$ ${{\bf w_p}}^{-1/2}$ δT_{pix}^{e} NET $[\mu K \sqrt{s}]$ NET [µK√s] [GHz] [1] [µK-′]^d [#] bolo^b bolo^b band^c [µ**K-′**]^d band^c [nK] [#] [nK] 28 84 83 24 150 30 84 9.2 14 83 17 26 45 19 364 71 3.7 5.7 34 84 70 8 12 69 1332 70 12 2.5 15 208 60 4.1 6.4 37 60 1.6 55 2.6 100 8.4 2196 54 1.1 1.8 10 444 4.0 24 52 516 57 2.5 150 5.6 3048 0.9 1.4 8 3.8 23 220 3.8 1296 59 1.6 2.5 15 408 77 3.8 5.8 34 340 2.5 744 100 3.7 5.6 33 120 220 20 30 180 8^g 140^{g} 500 1.7 1092 350 10 $16(140)^{f}$ 108 1500 170 $260(2000)^{f}$ 740 (70)^f 7^g 850 1.0 938 15000 280 110 250k 24k $40k(3000)^{1}$ 340^g Total^h 11094 0.6 0.9 5.4 2022 1.5 2.3 13

Table 3.2 EPIC-IM Bands and Sensitivities

^aTwo bolometers per focal plane pixel

 $^eSensitivity \, \delta T_{CMB}$ in a 2° x 2° pixel

^bSensitivity for a single bolometer to CMB temperature ^cSensitivity combining all bolometers in a band ${}^{d}[8\pi \text{ NET}_{\text{bolo}}^{2}/(T_{\text{mis}} N_{\text{bol}})]^{1/2}(10800/\pi)$

^fPoint source sensitivity in μ Jy (1 σ) per beam without confusion ^gSurface brightness sensitivity in Jy/sr in a 2° x 2° pixel (1 σ) ^hCombining all bands together

Dust Sensitivities (EPIC-IM)

Table 1.2. Sensitivity of EPIC and Planck to Polarization of Galactic dust.

Mission	Band	Angular Resolution arcmin FWHM	σ(Q) kJy/sr/beam	polarization depth A_V
Planck	350 GHz	5	24	4
EPIC	500 GHz	2	0.9	0.06
EPIC	850 GHz	1	0.7	0.01

The right column shows the minimum column density of dust, measured in visual wavelength optical depth A_v , for which a mission makes accurate polarization measurements.

PIXIE Parameters

Angular Resolution	2.6 degrees
Frequency Coverage	30-6000 GHz
Frequency Resolution	15 GHz

Science Questions:

- 1) The Role of Magnetic Fields in Star Formation
- 2) Magnetic Fields/Turbulence in the Diffuse ISM
- 3) Properties of Dust grains/grain alignment
- 4) Magnetic fields in nearby galaxies
- 5) Other topics?

Magnetic Fields in Star Formation

- Planck resolution: 10 arcmin in most molecular clouds
- CMB Probe: 1 to 2.5 arcmins
- Questions:
 - What linear scales do we need to resolve?
 - 2.5 arcmin resolution ~ 0.1 pc @150 pc distance.

Magnetic Fields and Turbulence in the Diffuse ISM

- Planck Resolution: 10 arcmin to 1 degree
- Questions:
 - What dust column sensitivity level/resolution do we need?
 - Is this science likely to be achieved by groundbased optical/near-IR polarimeters before CMB probe launches?

Planck 353 GHz magnetic field map of the Southern Galactic Cap with 1 degree resolution

Dust Polarization Spectra

- Questions:
 - What spectral coverage do we need?
 - What predictions from dust models/alignment models can we test?

Gandilo et al. 2016 BLASTPol Polarization Spectrum of Vela C:

Figure 4. Polarization spectra from previous work (gray), with new Vela C data added (colors). Points at 850 μ m separated horizontally for clarity. W51, OMC-1 p_{100}/p_{350} , and DR21 p_{1300}/p_{350} from Vaillancourt (2002). All previous measurements of p_{850}/p_{350} from Vaillancourt & Matthews (2012). The solid circle represents their median ratio for 15 clouds. OMC-1 p_{450}/p_{350} from Vaillancourt et al. (2008). M17 from Zeng et al. (2013). Red triangles are median polarization ratios with MAD error bars. Red circles are best-fit slopes to scatter plots of p/p_{350} . Magenta lines are spectra using the power-law fit parameters, and blue lines are spectra using the second-order polynomial fit parameters. Solid lines use the median values of the fit parameters and dashed lines reflect the distribution in the fit parameters (see the text).

Other "Galactic" Science Cases

• Tracing magnetic fields in nearby Galaxies?

Fig. 1.9. Simulated dust polarization map of the Andromeda Galaxy with EPIC. The color scale shows Spitzer 160 μ m emission [80], which has about the same resolution as EPIC at 850 GHz. Randomized green magnetic field vectors are shown where EPIC has enough sensitivity to detect polarization with accuracy $\sigma_P < 0.3\%$; for clarity, only one vector per 5 resolution elements is shown. No instrument in the field or in development has the sensitivity and resolution to map dust emission polarization for other spiral galaxies, until EPIC.

(Figure taken from the EPIC proposal https://zzz.physics.umn.edu/_media/groups/ipsig/epic-im-report.pdf)