Review of PICO foregrounds study with GNILC

Mathieu Remazeilles

Hanany et al, 1902.10541

11 June 2020

PICO in Brief

- Millimeter/submillimeter-wave, polarimetric survey of the entire sky
- 21 bands between 20 GHz and 800 GHz
- 1.4 m aperture telescope
- Diffraction limited resolution: 38' to 1'
- 13,000 transition edge sensor bolometers
- 5 year survey from L2
- 0.87 uK*arcmin requirement; 0.61 uK*arcmin goal (=CBE)

arXiv:1902.10541

https://z.umn.edu/cmbprobe

PICO data challenge map simulations: https://zzz.physics.umn.edu/ipsig/20180424 dc maps NERSC: /project/projectdirs/pico/data_xx.yy/

E TERMINA	💽 Register 🔒 Login	1		nu	nu_low	nu_high	del nu	FWHM	PolWeight
Probe Mission Study Wiki	Recent changes Media Manager Sitemag		Band#	(GHz)	(GHz)	(GHz)	(GHz)	(arcmin)	(uK*arcmin)
			1	21	18.2	23.4	5.2	38.4	. 16.9
You are here: CMB Probe Mission Study Wiki » 20180424_dc_maps			2	25	21.9	28.1	6.3	32.0	11.8
	20180424_dc_maps		3	30	26.3	33.8	7.5	28.3	8.1
Data Challenge Maps I			4	36.0	31.5	40.5	9.0	23.6	5.7
Apr 24 2018, Clem Pryke			5	43.2	37.8	48.6	10.8	22.2	. 5.8
For CMB-S4 project we have made simulations using a number of different foreground models plus lensed-LC described at S Data challenge summary page and in S a series of logbook postings.	M, noise and tensors. These are	9	6	51.8	45.4	58.3	13.0	18.4	4.1
	,	Ă.	7	62.2	54.4	70.0	15.6	12.8	3.8
I have exploited this work for PICO to make equivalent sims.			8	74.6	65.3	84.0	18.7	10.7	2.9
Everything below is available on NERSC under /project/projectdirs/pico/			9	89.6	78.4	100.8	22.4	9.5	, 2.0
I first made SPySM input maps for the PICO band centers as listed in the v3.2 spreadsheet at imageroptions. bandwidths to keep things simple. Everything is nside=512.	did this for delta function		10	107.5	94.1	120.9	26.9	7.9	1.6
			11	129.0	112.9	145.1	32.3	7.4	. 1.6
Under sky_yy we have the sky models where yy designates the sky model number:			12	154.8	135.4	174.1	38.7	6.2	1.3
91=PySM a1d1f1s1			13	185.8	162.5	209.0	46.5	4.3	2.6
92=PySM a2d4f1s3			14	222.9	195.0	250.8	55.7	3.6	3.0
 93=PySM a2d7f1s3 96=Brandon's MHD model taken from /olohal/homes/b/bhenslev/mbd_maps/maps_v1 on 180424 			15	267.5	234.0	300.9	66.9	3.2	2.1
 cmb = links to the cl's and alm's from which the LCDM component are generated (shared with Plank ffp1) sims)		16	321.0	280.9	361.1	80.3	2.6	2.9
Under expt_xx we just have single file 90/params.dat which specifies the instrument parameters for this round a	s taken from the v3.2 spreadsheet.		17	385.2	337.0	433.3	96.3	2.5	3.5
Under data_xx.yy we have the sets of simulated experimental maps. 90.00 contains the lensed-LCDM (llcdm), r components for each band. Noise levels are also as per the v3.2 spreadsheet. The signal components have beawidths as per the v3.2 spreadsheet. There are also combined ILCDM+noise+foreground+tensor maps (comb). T "comb" has full lensing signal. The "comb_AL" variants have the lensing signal artificially suppressed to the give "comb_AL0p15" is the amount of lensing PICO is supposed to have post de-lensing. "comb_AL0p1" and "comb_might be useful.	, noise (noise) and tensor (tenso) eem smoothing applied with beam . These come as four flavors. Straight ven levels of lensing power. So th AL 0003 ^e are also provided and		18	462.2	404.4	520.0	115.6	2.1	7.4
			19	554.7	485.3	624.0	138.7	1.5	34.6
			20	665.6	582.4	748.8	166.4	1.3	143.7
			21	798.7	698.9	898.5	199.7	1.1	. 896.4

PICO foreground models

- 91: PySM aldlfls1 (Planck's state-of-the-art)
 - ✓ Thermal dust: single MBB with variable $\beta_d(\vec{n})$ and variable $T_d(\vec{n})$
 - ✓ Synchrotron: power-law with variable $\beta_s(\vec{n})$
- 92: PySM a2d4f1s3 (Model A)
 - ✓ Thermal dust: two MBB components with uniform $\beta_d^{(1)}$, $\beta_d^{(2)}$ and variable $T_d^{(1)}(\vec{n})$, $T_d^{(2)}(\vec{n})$
 - ✓ Synchrotron: curved power-law with variable $\beta_s(\vec{n})$ and uniform curvature C_s
 - ✓ AME: 2% polarization

• 93: PySM **a2d7f1s3 (Model B)**

- ✓ Thermal dust: Hensley & Draine's physical model of thermal dust (*Hensley's PhD, 2015*)
- ✓ Synchrotron: curved power-law with variable $\beta_s(\vec{n})$ and uniform curvature C_s
- ✓ AME: 2% polarization
- 96: MHD (Model C)
 - ✓ Thermal dust & synchrotron consistently derived from MHD simulations (*Kritsuk et al 2018, Kim et al 2019*)
 - ✓ Multiple MBBs integrated along the line-of-sight (dust model from *Hensley's PhD, 2015*)

GNILC results with PICO

What has been done so far? $(\gtrsim 1.5 \text{ years ago})$

Several foreground models of different complexity already passed through GNILC, with quite robust results

✓ Residual foreground contamination reduced well below $r = 5 \times 10^{-4}$ across multipoles $2 \le \ell \le 200$

Next steps to make a PICO paper?

• Transform GNILC results into likelihood constraints on r (quite easy on my side)

 \rightarrow It is essential to quantify both biases $(r - r^{\text{true}})/\sigma(r)$ and uncertainties $\sigma(r)$

• Add more independent component separation methods for robustness:

 \rightarrow COMMANDER (parametric), GNILC (blind), other methods?

- Confront all methods to several foreground models of different complexity
 → Set of models already available on NERSC: /project/projectdirs/pico/data xx.yy/
- Consider not only r = 0 in forecasts, but also e.g. $r = 10^{-3}$

 \rightarrow How well can we recover the shape of the primordial signal across multipoles?

• Quantify the importance of extended spectral coverage: 20-800 GHz (baseline) vs 40-400 GHz (descope)

 \rightarrow More leverage than increased sensitivity?

- \rightarrow Allows to break model degeneracies / Provide evidence for incorrect modelling & false detections of r
- Do we want to include real delensing on maps, with residual foregrounds degrading lensing reconstruction? Do we want to focus on B-modes or extend the foreground study to other PICO science, e.g. SZ effects, etc?

COMMANDER results with PICO On the importance of broad spectral coverage

Next steps to make a PICO paper?

• Transform GNILC results into likelihood constraints on r (quite easy on my side)

 \rightarrow It is essential to quantify both biases $(r - r^{\text{true}})/\sigma(r)$ and uncertainties $\sigma(r)$

• Add more independent component separation methods for robustness:

 \rightarrow COMMANDER (parametric), GNILC (blind), other methods?

- Confront all methods to several foreground models of different complexity
 → Set of models already available on NERSC: /project/projectdirs/pico/data xx.yy/
- Consider not only r = 0 in forecasts, but also e.g. $r = 10^{-3}$

 \rightarrow How well can we recover the shape of the primordial signal across multipoles?

• Quantify the importance of extended spectral coverage: 20-800 GHz (baseline) vs 40-400 GHz (descope)

 \rightarrow More leverage than increased sensitivity?

- \rightarrow Allows to break model degeneracies / Provide evidence for incorrect modelling & false detections of r
- Do we want to include real delensing on maps, with residual foregrounds degrading lensing reconstruction? Do we want to focus on B-modes or extend the foreground study to other PICO science, e.g. SZ effects, etc?