Foreground subtraction & B-mode reconstruction with PICO

Mathieu Remazeilles

The University of Manchester

PICO Collaboration Science Meeting Minneapolis, USA, 1-3 May 2018

Sky simulations 1: PSM

smoothed to 1 degree for illustration purposes

Sky simulations 2: **PySM**

See C. Pryke's talk

Series of sky simulations with increasing complexity/realism: (same set as CMB-S4)

- 1. **a1d1f1s1**: dust single-MBB, synchrotron power-law
- 2. a2d4f1s3: dust two-MBB, synchrotron curved power-law, AME
- 3. a2d7f1s3: B. Hensley's dust grain model, synchrotron curved power-law, AME
- 4. B. Hensley's MHD model

 \rightarrow Different lensed CMB realisations: both $r = 3 \times 10^{-3}$ and r = 0

 \rightarrow Caveat: no compact radio/IR sources in PySM

PICO v2-1.4 21- 800 GHz

CMBP						
<u>del</u> nu/nu	0,25		del center	1,2		
nul	30 GHz					
	nu	nu <u>low</u>	nu <u>high</u>	<u>del</u> nu	FWHM	PolWeight
Band#	(GHz)	(GHz)	(GHz)	(GHz)	(arcmin)	(uk*arcmin)
1	21	18,2	23,4	5,2	40,9	50
2	25	21,9	28,1	6,3	34,1	33
3	30	26,3	33,8	7,5	28,4	22,4
4	36,0	31,5	40,5	9,0	23,7	15
5	43,2	37,8	48,6	10,8	19,7	9,1
6	51,8	45,4	58,3	13,0	16,4	7
7	62,2	54,4	70,0	15,6	13,7	5
8	74,6	65,3	84,0	18,7	11,4	4
9	89,6	78,4	100,8	22,4	9,5	3,2
10	107,5	94,1	120,9	26,9	7,9	2,9
11	129,0	112,9	145,1	32,2	6,6	2,7
12	154,8	135,4	174,1	38,7	5,5	2,6
13	185,8	162,5	209,0	46,4	4,6	3,6
14	222,9	195,0	250,8	55,7	3,8	5,3
15	267,5	234,0	300,9	66,9	3,2	9
16	321,0	280,9	361,1	80,2	2,7	16,0
17	385,2	337,0	433,3	96,3	2,2	32
18	462,2	404,4	520,0	115,6	1,8	75
19	554,7	485,3	624,0	138,7	1,5	220,0
20	665,6	582,4	748,8	166,4	1,3	1100
21	798,7	698,9	898,5	199,7	1,1	10000,0

PICO v3.0 21- 800 GHz

Increased sensitivities!

	nu	nu <u>low</u>	nu <u>high</u>	del nu	FWHM	PolWeight	Single <u>bolometer</u> NET
Band #	(GHz)	(GHz)	(GHz)	(GHz)	(arcmin)	(uK*arcmin)	(<u>uK</u> CMB)
1	21	18,2	23,4	5,2	38,4	16,3	94,7
2	25	21,9	28,1	6,3	32,0	11,7	86,6
3	30	26,3	33,8	7,5	28,3	7,8	54,9
4	36,0	31,5	40,5	9,0	23,6	5,6	50,2
5	43,2	37,8	48,6	10,8	22,2	5,4	40,3
6	51,8	45,4	58,3	13,0	18,4	4,0	37,1
7	62,2	54,4	70,0	15,6	12,8	3,9	56,5
8	74,6	65,3	84,0	18,7	10,7	3,2	52,7
9	89,6	78,4	100,8	22,4	9,5	2,0	33,8
10	107,5	94,1	120,9	26,9	7,9	1,7	32,1
11	129,0	112,9	145,1	32,3	7,4	1,6	26,7
12	154,8	135,4	174,1	38,7	6,2	1,4	26,3
13	185,8	162,5	209,0	46,5	4,3	2,5	49,9
14	222,9	195,0	250,8	55,7	3,6	3,1	56,0
15	267,5	234,0	300,9	66,9	3,2	2,0	41,7
16	321,0	280,9	361,1	80,3	2,6	3,0	55,3
17	385,2	337,0	433,3	96,3	2,5	3,3	69,0
18	462,2	404,4	520,0	115,6	2,1	7,8	141,0
19	554,7	485,3	624,0	138,7	1,5	44,1	460,5
20	665,6	582,4	748,8	166,4	1,3	176,9	1826,0
21	798,7	698,9	898,5	199,7	1,1	1260,7	10806,1

Component separation methods

• COMMANDER – Eriksen et al 2004, 2008 ; Remazeilles et al 2016, 2017

Bayesian multi-component spectral fit in each pixel through Gibbs sampling

<u>M. Remazeilles</u> (Manchester), H. K. Eriksen, I.K. Wehus (Oslo) foreground cleaning (parametric): YES power spectrum reconstruction: YES r estimation: YES

• SEVEM – Leach et al 2008 ; Fernandez-Cobos et al 2012

Internal template fitting in wavelet space

<u>B. Barreiro</u>, E. Martinez-Gonzalez, P. Vielva (IFCA) foreground cleaning (blind): YES power spectrum reconstruction: (YES) r estimation: NO

• NILC – Delabrouille et al 2009 ; Remazeilles et al 2011 ; Basak et al 2012, 2013

Minimum-variance internal linear combination in wavelet space

<u>S. Basak</u> (IISER), C. Baccigalupi (SISSA) foreground cleaning (blind): YES power spectrum reconstruction: NO r estimation: NO

All these methods already have a strong heritage from Planck data analysis

Component separation methods

• COMMANDER – Eriksen et al 2004, 2008 ; Remazeilles et al 2016, 2017

Bayesian multi-component spectral fit in each pixel through Gibbs sampling

<u>M. Remazeilles</u> (Manchester), H. K. Eriksen, I.K. Wehus (Oslo) foreground cleaning (parametric): YES power spectrum reconstruction: YES r estimation: YES

• SEVEM – Leach et al 2008 ; Fernandez-Cobos et al 2012

Internal template fitting in wavelet space

B. Barreiro, E. Martinez-Gonzalez, P. Vielva (IFCA) foreground cleaning (blind): YES power spectrum reconstruction: (YES) r estimation: NO

• NILC – Delabrouille et al 2009 ; Remazeilles et al 2011 ; Basak et al 2012, 2013

Minimum-variance internal linear combination in wavelet space

<u>S. Basak</u> (IISER), C. Baccigalupi (SISSA) foreground cleaning (blind): YES power spectrum reconstruction: NO r estimation: NO

All these methods already have a strong heritage from Planck data analysis

NILC

<u>S. Basak</u>:

"NILC analysis of PICO simulations is still in progress. Results are coming soon."

<u>B. Barreiro</u>

SEVEM: internal template fitting

R.B. Barreiro, E. Martínez-González, P. Vielva et al.

The reconstructed CMB map is a linear combination of the map to be cleaned and a set of templates that trace the foregrounds

$$\hat{s}_i(x) = d_i(x) - \sum_{i=1}^{N_v} \alpha_i t_i(x)$$

- The templates t_i are typically constructed as the difference between two close frequency channels smoothed at the same resolution (to remove CMB from the templates)
- The linear coefficients α_i are obtained by minimising the variance of the cleaned map outside a given mask
- ➤ Fast ⇒ it can work at high resolution
- ➢ Robust ➡ no assumptions about foreground modelling
- It allows to obtain cleaned maps at different frequencies
 - can be combined to improve the signal-to-noise
 - provide additional consistency checks
- Used successfully in Planck to produce intensity and polarization CMB maps

B. Barreiro

SEVEM: example of cleaned 110 GHz channel (Q)

Instituto de Física de Cantabria

- Simulations from M. Remazeilles (N_{side}=16)
- 12 templates (constructed from 21-52, 270-800 GHz)
- Preliminary results

Input CMB

Simulated 110 GHz channel

Cleaned 110 GHz channel

SEVEM: example of cleaned 110 GHz channel (U)

- Simulations from M. Remazeilles (N_{side}=16)
- 12 templates (constructed from 21-52, 270-800 GHz)
- Preliminary results

Input CMB

Simulated 110 GHz channel

Cleaned 110 GHz channel

SEVEM for PICO: status and plans

- Currently studying optimal SEVEM configuration for PICO:
 - Define templates to be constructed
 - Select maps to be cleaned
 - How to combine cleaned maps to improve final result (e.g. weighting by noise, use cross-correlation between cleaned channels...)?
- Next steps: estimate power spectrum and cosmological parameters from cleaned maps
 - Implementation of QML and MASTER to estimate power spectrum already in place (D. Bilbao-Ahedo, PhD student at IFCA)
 - Go from cleaned maps to full estimation of cosmological parameters (G. Rocha)
- Provide comparison with other methods

Commander

Methodology

Eriksen et al 2004, 2008 Remazeilles et al 2016, 2017

1. Separation of components (COMMANDER fitting + Gibbs sampling):

$$egin{array}{rcl} oldsymbol{s}^{(i+1)} &\leftarrow P\left(oldsymbol{s}|C_{\ell}^{(i)},oldsymbol{eta}^{(i)},oldsymbol{d}
ight),\ C_{\ell}^{(i+1)} &\leftarrow P\left(C_{\ell}ig|oldsymbol{s}^{(i+1)}
ight),\ oldsymbol{eta}^{(i+1)} &\leftarrow P\left(oldsymbol{eta}ig|oldsymbol{s}^{(i+1)},oldsymbol{d}
ight), \end{array}$$

amplitudes (CMB, foregrounds) power spectrum (CMB) spectral indices (foregrounds)

2. Likelihood estimation of r and A lens:

$$-2\ln\mathcal{L}\left[\widehat{C}_{\ell}|C_{\ell}^{th}\left(r,A_{lens}\right)\right] = \sum_{\ell} (2\ell+1)\left[\ln\left(\frac{C_{\ell}^{th}}{\widehat{C}_{\ell}}\right) + \frac{C_{\ell}^{th}}{\widehat{C}_{\ell}} - 1\right]$$

$$C_{\ell}^{th} = r C_{\ell}^{tensor}(r=1) + A_{lens} C_{\ell}^{lensing}(r=0),$$

3. Blackwell-Rao posterior: $\mathcal{P}(r, A_{lens}) \approx \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}\left[\widehat{C}_{\ell}^{i} | C_{\ell}^{th}(r, A_{lens})\right]$

The Commander algorithm has strong heritage from real Planck data analysis

Commander reconstruction of CMB E-modes 21 – 800 GHz

 Synchrotron power-law with curvature: β_s, C_s

E-modes serve as a useful validation of the Commander algorithm

• Thermal dust MBB: β_{d} , T_{d}

Commander reconstruction of CMB B-modes 21 – 800 GHz

- Synchrotron power-law with curvature: β_s, C_s
- Thermal dust MBB: β_d , T_d

 $\beta_{_{d}},\,T_{_{d}},\,\beta_{_{s}}$ locally fitted in each pixel $C_{_{s}}$ globally fitted

Commander reconstruction of CMB B-modes 21 – 800 GHz

- power-law with curvature: β_{s} , C_{s}
- Thermal dust MBB: β_d, T_d

 β_{d} , T_{d} , β_{s} locally fitted in each pixel C_{s} globally fitted

Increased sensitivity reduces $\sigma(r)$ by 10% only

Commander results on foregrounds PICO v2-1.4

Commander results on foregrounds **PICO v3.0**

Commander reconstruction of CMB B-modes No foregrounds, 50% mask

How $\sigma(r)$ reduces after foreground cleaning and 60% delensing?

 \rightarrow 60% delensing is the value quoted by CORE:

Challinor et al JCAP (2018), 1707.02259

 \rightarrow Shortcut adopted for delensing:

1. The input CMB map is simulated from the "modified" power spectrum:

 $C_{\rho}^{BB}(CMB) = C_{\rho}^{BB}(tensor) + 0.40 * C_{\rho}^{BB}(lensing)$

2. Foreground cleaning is then performed on the "modified" sky simulations

Commander reconstruction of CMB B-modes no delensing

- Synchrotron power-law with curvature: β_s, C_s
- Thermal dust MBB: β_d, T_d

Commander reconstruction of CMB B-modes 60% delensing

- Synchrotron • power-law with curvature: β_{s} , C_{s}
- Thermal dust • MBB: β_d , T_d

 $2 \leq \ell \leq 50$

Discarding PICO frequencies?

Commander reconstruction of CMB B-modes 21 – 800 GHz

 σ (r = 10⁻³) = 0.4 x 10⁻³ after foreground cleaning

Commander reconstruction of CMB B-modes 43 – 462 GHz

Narrowing the frequency range of observations causes biases on large-scales due to foregrounds

COMMANDER results on foregrounds PICO 21 – 800 GHz

COMMANDER results on foregrounds PICO 43 – 462 GHz

Summary for PICO

	estimated r	σ(r=10⁻³)
	[× 10 ⁻³]	[× 10 ⁻³]
 21 – 800 GHz, no foregrounds, 50% mask 	0.6	0.4
 21 – 800 GHz, with foregrounds, 50% mask 		
PICO v2-1.4	0.30	0.41
PICO v3.0	0.51	0.36
PICO v3.0 + 60% delensing	0.57	0.24
 43 – 800 GHz, with foregrounds, 50% mask 	0.4	0.5
 43 – 462 GHz, with foregrounds, 50% mask 	1.3	0.7

These results are for $2 \le \ell \le 50$.

We should be able to reduce $\sigma(r)$ by going to higher multipoles, e.g. by combining COMMANDER at low- ℓ and NILC/SEVEM at high- ℓ

Path forward with foregrounds

• High-ell power-spectrum / r estimation still needed for blind methods NILC, SEVEM

→ Manpower: power spectrum estimators, likelihoods (G. Rocha, R. Flauger?)

More complex simulations

 \rightarrow Current results still based on a "quite simple" sky model:

- Single-MBB dust ; no decorrelation ; no bandpasses
- Single spectral index per N_{side}=16 pixel (no SED mixing/averaging issue)
- \rightarrow Real challenge for parametric methods
 - Alternatives? e.g. moment expansion (Chluba et al 2017) Still needs to prove itself on sky simulations
 - Blind approaches (NILC, SEVEM) more robust to unknown foregrounds?

Perform multi-instrument component separation, e.g. C-BASS + PICO

J. Hill-Valer's talk

Path forward with foregrounds

- Foregrounds + systematics cross-talk in the simulations
 - \rightarrow Calibration uncertainties, asymmetric beams, bandpass mismatch
- Real delensing on foreground-cleaned CMB maps (manpower?)
- What about intensity component separation? Lots of exciting targets:
 - \rightarrow Relativistic SZ mapping
 - \rightarrow Anisotropic µ-distortions (Remazeilles & Chluba, MNRAS 2018)
 - \rightarrow CIB mapping

Backup slides

#1. Foreground mismodelling

Remazeilles, Dickinson, Eriksen, Wehus, MNRAS (2016)

The Sneaky Point:

CMB experiments with narrow frequency range < 400 GHz show no evidence ($\chi 2 \sim 1$) for incorrect foreground modelling!

#2. Extragalactic compact foregrounds cannot be ignored

Polarized Radio and IR compact sources at ~ 100 GHz dominate the primordial CMB B-mode at $r = 10^{-3}$ on angular scales $\ell \gtrsim 50$

Curto et al 2013

#3. What about magnetic dust (MD)?

- Diffuse MD not yet observed!
- In theory, MD might be highly polarized ~35%
- Spectral degeneracy at ~ 100 GHz between CMB and MD

 \rightarrow can be a killer for component separation

#4. Averaging effects

The actual foreground SED on the maps differs from the real SED in the sky !

Chluba, Hill, Abitbol, 2017

Mapping / pixelization

many values β_{dust} per pixel (effective SED: $\sum_{i} v^{\beta i} = v^{\beta + C Log(v) + ...}$)

Pixelization/averaging creates spurious curvatures on the foreground SED!

 \rightarrow Bias of $\Delta r \approx 10^{-3}$ if ignored in the parametric fitting

Remazeilles et al 2017, for the CORE collaboration

Dust spectral indices in the sky

Anisotropic μ -type distortions at $z > 10^4$

 μ -T correlation signal between CMB temperature and μ -distortion anisotropies

- \rightarrow accessible signal, allowing to constrain $f_{_{NI}}(k\approx740 \text{ Mpc}^{-1})$
- \rightarrow to be definitely considered by future CMB satellites!

More details in Remazeilles & Chluba, MNRAS (2018): arXiv:1802.10101