- Describe the mission (succinctly);
 - o include image?
- ✓ Give cost
- ✓ Include Table of key performance parameters (per email thread)
 - o Is anything missing?
- Summary of the compelling science
 - Graphic showing the many PICO science objectives (if not used for cover)
- Why Space? why now? How does this complement with ground program?
 - No other single platform can deliver the \ell<~2300 science with the sensitivity, foreground separation, and systematic control that PICO will have
 - A detection of r~1e-3 at \ell=80, would be made at multiple independent patches
 - Are science goals listed still relevant in 2030? If yes, make it clear
 - Why now? Technologies will be ready, science goals are clear; r detection is not a pre-requisite for the mission, and is therefore not a trigger.
 - o Ground complements space with 5 times higher resolution
- Simple implementation
 - Single instrument, simple operations
 - Parallels to Planck-HFI (0.1 K in space; same reflector size; total projected cost similar); be more explicit about resolution, bands?
 - These approaches have been proven in the past
- Point to technology readiness
 - Point to default improvements by PhaseA
- Point to heritage and maturity of the entire field
 - Proven track record in technology, and systematic control (acknowledge pushing to new regimes)
- Point to remaining necessary steps forward
 - Adjustments of technology for space
 - o Demonstrate Foregrounds Separation
 - Demonstrate Systematic control
- Give clear recommendation to the panel
 - Endorse a space mission next decade
 - Fund technology, foregrounds separation, and systematics control

 \triangleright