CMB Probe Mission Study

April 26, 2017

Overview

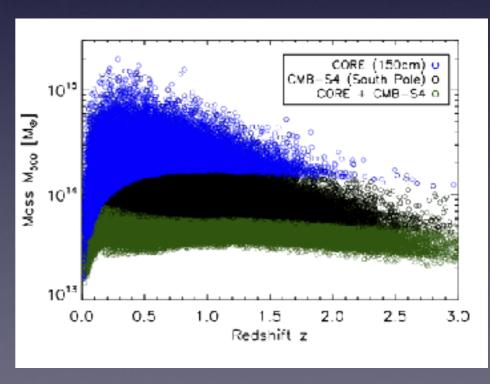
- Admin (?)
- Follow-up on action items from last week
- Aperture size guidance for a medium resolution imager (Amy)
- Low resolution approach: imager + spectrometer?
- Drivers for resolution (+bands) from cluster science
 - arXiv:1703.10456 (Cluster Science with CORE)

Action Items

- Raphael will organize a group of people who will work on a particular target for r
- Lloyd will organize study of delensing
- Lloyd will coordinate the data challenge; Shaul to work on band and noise definitions
 - SH Working on bands
- Shaul will communicate the suggestion of a Foreground workshop to Jamie/Graca
 - Communicated.
- Al will organize a group that will assess the motivation for a super-pixie or develop the case for compspec (complementary spectrometer)
- Shaul will write to Darren Dowell, and Giles Novak regarding galactic magnetic field and galactic dust science; Bill will talk to Aureliene.
 - Sent e-mail to Novak + Dowell; Novak responded

Aperture Size Guidance

See Amy's presentation


Low Resolution Approach

- Claim: 'only low resolution' should not be ignored, and therefore must be studied.
 - 'but it fits in lower cost': does it?
 - even if it does: can we do better?
- Perhaps 2-4 low resolution telescopes (~50 cm, LiteBIRD, EPIC-LC), including a spectrometer
 - Limited self-delensing

Cluster Science (arXiv:1703.10456)

- Strong complementarity between a space mission and an S4 experiment
- Adapt the calculations for the Probe specifications?

Experiment	$N_{ m chis}$	$N_{ m clus}/{ m deg}^2$	$N_{\rm chis}(z > 1.5)$
CORE-120	38,000	1.1	200
CORE-150	52,000	1.5	500
CORE-180	65,000	1.85	800
CMB-S4 (Atacama)	10,700	0.47	70
CMB-S4 (South Pole)	71,000	6.9	5,000
CORE-150+CMB-S4 (Atacama)	56,000	2.5	850
CORE-150+CMB-S4 (South Pole)	222,000	21.5	20,000

Melin et al. 2017

Backup Slides