Simulating beam related systematic effects with QuickPol

E. Hivon

QuickPol

- Temperature QuickBeam (used in Planck DRI and DR2): s=2
 - $+ C'_{\ell}^{TT} = Σ_{a} ω_{a}^{2} b_{\ell a}^{*} b_{\ell a} C_{\ell}^{TT}$
 - b_{la} : weighted combination of scanning beams in DetSet,
 - ω_{a^2} : encodes scanning strategy (<u>assumed to vary slowly across the sky</u>)
- Temperature + Polarisation QuickPol (New in DR3!):
 - + $\mathbf{C}'_{\ell} = \sum_{\mathfrak{s} \mathfrak{i} \mathfrak{j}} \mathbf{\Omega}_{\mathfrak{s} \mathfrak{i} \mathfrak{j}} \circledast \mathbf{B}_{\ell \mathfrak{s} \mathfrak{i}}^{*t} \cdot \mathbf{C}_{\ell} \cdot \mathbf{B}_{\ell \mathfrak{s} \mathfrak{j}}$
 - **C** : 3x3 *C*(*l*) matrix
 - ▶ **B** : weighted scanning polarised beams in DetSet
 - Ω : encodes scanning strategy weighted by map-making IQU inverse covariance matrix can be based on a subset of pixels !
 - provides effective beam window matrix We describing Ce coupling
 - has be extended to gain and polar efficiency uncertainty
 - Backward C(I) fitting can then still be used as a rain check to detect/catch remaining systematics

Hivon, Mottet & Ponthieu, 2017

100-1a: $\langle \cos 2\psi \rangle$

100-1a: $\langle \cos \psi \rangle$

&=

Map(s) Power Spectra

 \tilde{C}_{ℓ}^{EE} \tilde{C}_{ℓ}^{BB}

 \tilde{C}_{ℓ}^{TE}

 $\tilde{C}_{\ell}^{\ell} \tilde{C}_{\ell}^{EB} \\ \tilde{C}_{\ell}^{ET} \\ \tilde{C}_{\ell}^{ET} \\ \tilde{C}_{\ell}^{BT} \\ \tilde{C}_{\ell}^{ET}$

 $\tilde{\gamma B}E$

Sky Power Spectra

For each l_{i}

 \mathbf{W}_{ℓ} is a 9x6

(diagonal dominated)

matrix

 \mathcal{T}^{TB}_{ℓ}

$$W_{l}^{XY,TT} = \sum_{s} \sum_{j_{1},j_{2}} \begin{pmatrix} \hat{\Omega}_{00}^{s} \hat{b}_{l,s}^{(j_{1})*} \hat{b}_{l,s}^{(j_{2})} \\ \hat{b}_{l,s+2}^{(j_{1})*} (\hat{\Omega}_{-2-2}^{s} \hat{b}_{l,s+2}^{(j_{2})} + \hat{\Omega}_{-22}^{s} \hat{b}_{l,s-2}^{(j_{2})}) + \hat{b}_{l,s-2}^{(j_{1})*} (\hat{\Omega}_{2-2}^{s} \hat{b}_{l,s+2}^{(j_{2})} + \hat{\Omega}_{22}^{s} \hat{b}_{l,s-2}^{(j_{2})}) \\ \hat{b}_{l,s+2}^{(j_{1})*} (\hat{\Omega}_{-2-2}^{s} \hat{b}_{l,s+2}^{(j_{2})} - \hat{\Omega}_{-22}^{s} \hat{b}_{l,s-2}^{(j_{2})}) + \hat{b}_{l,s-2}^{(j_{1})*} (\hat{\Omega}_{22}^{s} \hat{b}_{l,s-2}^{(j_{2})} - \hat{\Omega}_{2-2}^{s} \hat{b}_{l,s+2}^{(j_{2})}) \\ - \hat{b}_{l,s}^{(j_{1})*} (\hat{\Omega}_{0-2}^{s} \hat{b}_{l,s+2}^{(j_{2})} + \hat{\Omega}_{02}^{s} \hat{b}_{l,s-2}^{(j_{2})}) \\ - \hat{b}_{l,s}^{(j_{1})*} (\hat{\Omega}_{02}^{s} \hat{b}_{l,s-2}^{(j_{2})} - \hat{\Omega}_{0-2}^{s} \hat{b}_{l,s+2}^{(j_{2})}) \\ - \hat{b}_{l,s}^{(j_{1})*} (\hat{\Omega}_{22}^{s} \hat{b}_{l,s-2}^{(j_{2})} - \hat{\Omega}_{-2-2}^{s} \hat{b}_{l,s+2}^{(j_{2})}) + i \hat{b}_{l,s-2}^{(j_{1})*} (\hat{\Omega}_{22}^{s} \hat{b}_{l,s-2}^{(j_{2})} - \hat{\Omega}_{2-2}^{s} \hat{b}_{l,s+2}^{(j_{2})}) \\ - \hat{b}_{l,s}^{(j_{1})*} (\hat{\Omega}_{-20}^{s} \hat{b}_{l,s+2}^{(j_{1})*} + \hat{\Omega}_{20}^{s} \hat{b}_{l,s-2}^{(j_{1})}) \\ - \hat{b}_{l,s}^{(j_{2})} (\hat{\Omega}_{-20}^{s} \hat{b}_{l,s+2}^{(j_{2})} + \hat{\Omega}_{20}^{s} \hat{b}_{l,s-2}^{(j_{2})}) \\ - \hat{b}_{l,s}^{(j_{1})*} (\hat{\Omega}_{-20}^{s} \hat{b}_{l,s+2}^{(j_{2})} + \hat{\Omega}_{20}^{s} \hat{b}_{l,s-2}^{(j_{2})}) \\ - \hat{b}_{l,s+2}^{(j_{1})*} (\hat{\Omega}_{-2-2}^{s} \hat{b}_{l,s+2}^{(j_{2})} + \hat{\Omega}_{-2}^{s} \hat{b}_{l,s-2}^{(j_{2})}) \\ - \hat{b}_{l,s+2}^{(j_{1})*} (\hat{\Omega}_{-2-2}^{s} \hat{b}_{l,s+2}^{(j_{2})} + \hat{\Omega}_{-2}^{s} \hat{b}_{l,s+2}^{(j_{2})}) \\ - \hat{b}_{l,s+2}^{(j_{1})*} (\hat{\Omega}_{-2-2}^{s} \hat{b}_{l,s+2}^{(j_{2})} + \hat{\Omega}_{-2}^{s} \hat{b}_{l,s+2}^{(j_{2})}) \\ - \hat{b}_{l,s+2}^{(j_{1})*} (\hat{\Omega}$$

TT column of beam window matrix

$$p^{\text{Stree}} \text{polar efficiency} \\ \rho^{\text{St}_{1,3}^{(b)}} = \left[b_{1,2}^{(b)} + b_{1,2}^{(b)}$$

Error propagation in Planck-HFI

 MonteCarlo simulations of QuickPol are run quickly with the following uncertainties on each detector

beam measurements:

- * detector scanning $b\ell_m$ from MC observation of planets,
- > gain calibration (g):
 - ★ Gaussian distributed (GD) around nominal value (1.0),
 - * $\delta g = 0.1\%$ @ 100-217GHz,
- polar efficiency (ρ), 0 < ρ_{SWB} < ρ_{PSB} < 1
 - \star GD around IMO value,
 - * $\delta \rho$ = a few 0.1% (read from Rosset+2010),
- polarisation orientation (ψ):
 - ★ GD around IMO value,
 - * $\delta \psi = 1 \text{ deg}$ for PSB, 5 deg for SWB (adapted from Rosset+2010).

Conclusion

- Facility to quickly simulate systematics effects induced by
 - beam elongation and mismatch +
 - calibration (g), polarisation angles (ψ), polarisation efficiency (ρ)
- No need for full TOD simulations
- Need:
- detailed pointing information (hits + orientation in a sub-set of pixels) of un-flagged samples,
- * beam map or $b\ell_m + \delta b\ell_m$,
- * g + δg,
- ***** ψ **+** δψ,
- \star ρ + δρ