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1 Summary

• Getting XP to be a factor of 10 below the cosmological signal requires rotations
of less than 0.3o. The requirement is less stringent for the GW signal, 1.3o is
enough for T/S = 0.1.

• Differential XP across detectors can be constrained by demanding that all
detectors see the same. Two detectors observing a common area for a week
can be calibrated to approximately 2o.

• The simultaneous calibration of many detectors reduces the above by
√

2.

• If one has a model for the rotation across the focal plane with Np parameters,

then the error scales down by
√

Np/Nd where Nd is the number of detectors.

• To the extent that the residual for each detector is random, there will be an
additional reduction because of averaging by maybe as much as another

√
Nd.

• The overall rotation common to all detectors can be constrained because it
induces a cross correlation between B and both T and E. Most of the signal
comes from E−B. The overall rotation can be constrained to 0.04o. This effect
appears to be easier to control. A possible complication is E-B separation.

• The overall rotation is easier to determine because one is combining the infor-
mation of Nd detectors so one gets an improvement of

√
Nd in the noise and

the angle constraint.

• Even if one does not have a model for the XP across the focal plane, the process
of mapmaking may provide a simplification where not all the XP angles for
each detector are needed but only a smaller number of combinations. This
may improve the situation substantially.

• Perhaps an obvious point: one should measure E−B and T −B cross spectra
as a monitor of systematics .
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2 Leakeage from Cross-Pol

To make a simple order of magnitude estimate of the effect we can reproduce Brad’s
simulations. Assume the flat sky approximation and take that the polarization
reference frame was rotated by an angle α so that,

Q̃ + iŨ = e2iα(Q + iU) (1)

with Q̃ and Ũ represent the measured values and Q and U are the real ones.
In the flat sky approximation it is easy to relate the corresponding measured Ẽ

and B̃ to the underlying ones,

Ẽ(l) = cos 2αE(l) + sin 2αB(l)

B̃(l) = − sin 2αE(l) + cos 2αB(l). (2)

As a result of this mixing the power spectra of E and B are modified. Also
very importantly there is now an additional cross correlation between E and B and
between B and T that were not present before. The modified power spectra are
given by:
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l
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From the above equation it is easy to determine the level of cross-pol that can
be tolerated. Figure 1 shows the comparison of the cosmological signal (GW with
T/S = 0.1 + lensing) with the B modes generated by the leakege from E. For
l = 100 the contamination produced by a rotation of 1.3o a factor of ten below
the GW signal (for T/S=0.1). The lensing signal is tougher to get, requiring an
α < 0.35o to be a factor of 10 below the signal. In the Cls level of contamination
scales as α2 and the amplitude of the GW scale as T/S.

We will use this as a benchmark for the typical rotations that are allowed. In
what follows we will divide the effect as a relative rotation between different detectors
and an overall average offset. We will try to calibrate each of them independently.

3 Relative offset

The relative offset can be calibrated by demanding that different detectors see the
same polarization signal. First we can do an order of magnitude estimate assuming
two detectors observe the same patch of sky for a time to. Assume:

(Q̃ + iŨ)k = e2iαk(Q + iU) + Nk, (4)
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Figure 1: Power spectrum of B modes generated by XP compared to cosmological
signal. The y axis is l2Cl/2π in µK2. Black curve is for cosmological B modes (
lensing + GW with T/S=0.1). Three curves for contamination are shown, from top
to bottom α = 10o, 1o and 0.1o. The contamination curves scale as α2 and the level
of GW signal as T/S.



where k = 1, 2 runs over the number of detectors and Nk is the noise. The results
are identical if one assumes that the two detectors are always looking at the same
pixel or that the look at many of them. If there are many pixels Q, U and N are
vectors of dimensions Npix.

The easy way to estimate how well you can measure the difference of αs is to
consider the difference d = (Q̃ + iŨ)1 − (Q̃ + iŨ)2. The difference d is a Gaussian
variable and one can estimate the expected value of the likelihood, or χ2 as a function
of δα. The result is:

〈∆χ2〉 = 2
〈Q2 + U2〉

σ2
δα2 (5)

For LCDM 〈Q2+U2〉 = 20 µK2, and σ2 = s2/to where s is approximately 150µK
√

sec.
Thus we get an error on α,

σα = 1.8o × s

150µK
√

sec
× (

1 week

to
)1/2 × 4.4µK√

Q2 + U2
(6)

So the situation is not that good. One can do a few more extension of the
calculation. For example consider the case when you have many detectors, wether
there is any improvement. One can calculate again the new expected χ2. Again the
average α cannot be constrained. The answer in this case is (for large numbers of
detectors),

〈∆χ2〉 = 4
〈Q2 + U2〉

σ2

∑
k

δα2
k, (7)

where δαk = αk − ᾱ and ᾱ is the average offset which cannot be constrained.
From the above formula we see that if all the δαk are parameters they each can be
constrained only a factor of

√
2 better than when we compare just two detectors.

The reason of the factor of two is that you can think that you are comparing each
detector not to another detector but to the combination of all of them. So in the
calculation for the simple difference is the same as assuming one of the two detectors
had very little noise. So you gain a factor of 2 in δχ2, a factor of

√
2 in σα. Another

technical note is that I derived the above equation both when everybody is looking
at a single pixel and when each detector is covering a map.

Another cross check, the last result should be equivalent to trying to calibrate
the cross-pol on one detector using a CMB pixel of known polarization. Assume
that we orient our reference frame so that the polarization in that pixel is in Q = P .
The rotation angle is given by tan(2α) = U/Q. Thus if for the detector the noise in
U is σ then

δα =
1

2
σ/P, (8)

which is exactly the above equation in the case of many detectors. If P ≈ 4.4 µK
and σ ≈ 0.2 µK, this gives δα ≈ 1.3o.

One gains a bit if one has a model for the deflection that depends on only a few
parameters. For example if δα(x) = amx2 cos(mφ) where x is say the distance to the
center of the focal plane and φ the angle around it. One is trying to constrain am.



For such a model, by inserting it into the from of δχ2 and seeing what the constrain
in am would be, one can see that the worse deflection (at the edge of the field) is

down from the number when all detectors are being fitted by a factor of
√

6
Nd

. In

general one would get an improvement proportional to
√

Npar/Nd where Npar is the
number of parameters in the model and Nd the number of detectors.

Finally to the extent that the residual from each detector is is random, then in
the combined map the error will be further reduced by as much as an additional√

Nd if each pixel was measured equal amount of times by each detector.

4 Overall Offset

The key to determining the overall offset is that it creates an E-B cross correlation
and a T - B cross correlation. Of course being able to detect this relies on being able
to separate E and B in a finite patch. We will ignore this issue.

Given the formulas of the cross correlations E − B and T − B in equation (3)
we can ask the question for what α do they become detectable. The signal to noise
is each of them is:
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∑
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Plugging in the numbers for the EBEX patch I get,

(S/N)2|E−B = (
α

0.04o
)2

(S/N)2|T−B = (
α

0.11o
)2 (10)

So all the information comes from E − B and that is because the cross correlation
coefficient between T and E is not one to start with. It appears that α can be
measured quite accurately this way.

One can do a more sophisticated calculation. One can calculate the Fisher matrix
for the power spectra and α as an additional parameter. It is easy to prove that the
Fisher matrix is diagonal between the power spectra and α and obtain the expected
error bar on α when the bandpowers are fitted at the same time. I have computed
all the elements of the Fisher matrix and obtained the expected constraints on α.
By far most of the information comes from E − B, as the full result differs from
what one gets by measuring only E −B by less than 1% .

5 Map Making

Even if one does not have a model for the XP across the focal plane the map making
process may provide a simplification. For example if all detectors are weighted



equally across the map, then only the average α will be relevant. This of course will
not be the case but it may still be true that the number of independent numbers
needed to characterize the XP in the final map is less that one per detector. It
should be possible to estimate this using the know scan at least for a simple co-
add map making procedure. This might be something that Nicola can do with his
simulations.


