
1 Pointing requirements at the level of the final

map

Assume there is a pointing error given by δθ for each pixel in the map. This is the
final error at the level of the map. The error on an individual scan can be
larger provided there is sufficient “averaging-down”. Given an assumption
of the statistical properties of δθ one can calculate the B modes created from the E
modes. This is completely analogous to lensing.

For simplicity we will assume that the power spectrum of δθ is white up to
some coherence scale and that the x and y components of the deflection angle are
independent,
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where i, j stand for the different components of the deflection angle and ls encodes
the coherence length. The power spectrum is normalized so that
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Important physical point: the effect will be maximum for a coherence length
close to the beam scale. To see this first consider what happens when you increase
the coherence length. It is important to note that a uniform translation of all pixels
will not convert E to B. As a result if we consider a pointing error field that has a
large coherence length, E modes of wavelength smaller than this will not contribute
to the conversion. If less ls are being converted then as we increase the coherence
length the effect is reduced. This is especially true because the power spectrum of
the derivative of E is very blue, so as you take out the contribution from the high
ls you loose quite a bit.

The l2Cl of the B contamination increase like l2 up to the coherence length of
δθ (ls), roughly scaling as
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A comparison between ∆CB
l for various values of ls and the B modes can be seen

in the first figure of the mathematica output. As a result the lensing signal is the
much more affected. Note that here is a simple interpretation for equation (3). The
integral just gives the expectation value of the gradients of the stokes parameters.
The pointing error induces an error in the map of the form δQ = δθ ×∇Q and the
same for U . This term creates additional power in the map, half of which goes to E
and half to B, the reason for the 1/2 in equation (3). This happens on small scales
so the power spectrum has a white noise form on large scales. The additional B



power has to integrate to 1/2σ2
θ〈|∇Q|2 + |∇U |2〉 but with only modes with l < ls

contributing to the gradient, exactly what (3) says.
The second and third figures show the ratio between ∆CB

l and the cosmological
CB

l (assuming T/S =0.1) at l = 100 and l = 1000 as a function of ls when σθ =
1 arcmin. The worst ratio comes for ls ∼ 500. For that choice one has
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Thus to get the contamination to be 1/10th of the signal for the lensing one
needs σθ ∼ 0.16 arcmin ∼ 9 arcsec. For the GW with T/S of 0.1 the requirement
is σθ ∼ 0.6 arcmin ∼ 37 arcsec. For the GW with T/S of 0.01 the requirement is
σθ ∼ 0.2 arcmin ∼ 10 arcsec.

1.1 Some Details of the calculation

We expand both Q and U in series so that the observed Q (Q̃) and U (Ũ) are given
by,
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We use the above expressions to go to Fourier space and compute Q̃(l) and Ũ(l)
and combine them to form B̃(l) = − sin 2φlQ̃(l) + cos 2φlŨ(l). Squaring B̃(l) we
then calculate the change in B power spectrum.
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A simple check of what happens when the coherence length increases, that is
when ls → 0. In that limit Cθ

l−l′ approaches δD(l−l′) and so the integral tends to zero
because sin2 2(φl − φl′) → 0. This is simply because a constant shift cannot convert
E to B and for modes much smaller than the coherence length of the deflection the
deflection is effectively constant.

In the other limit, when ls →∞ Cθ
l is effectively constant so
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with the 1/2 coming from the average of sin2 2(φl − φl′).
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Figure 1: Power spectrum of B modes generated by pointing errors compared to
cosmological signal. The y axis is l2Cl/2π in µK2. Black curve is for cosmological B
modes ( lensing + GW with T/S=0.1). Three curves for contamination are shown,
from top to bottom ls=500,1000 and 100, ls=500 is close to the worse case scenario.
Deflection angle RMS was taken to be σθ of 1 arcmin. The contamination curves
scale as σ2

θ
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Figure 2: Ratio Cls of B modes from contaminant to cosmological signal as a func-
tion of ls for l=100 (relevant for the GW signal). Assumed σθ=1 arcmin. Ratio of
scales as σ2

θ
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Figure 3: Ratio Cls of B modes from contaminant to cosmological signal as a func-
tion of ls for l=1000 (relevant for the lensing signal). Assumed σθ=1 arcmin. Ratio
of scales as σ2

θ



2 From scan to map

We could think of the final error in the map as follows. At any given time during
the scan one thinks that one is pointing in a particular direction but the pointing
reconstruction has an error δθpoint. Furthermore one is using some interpolation
scheme when assigning the measured polarization to a particular pixel. For example
one could be assigning the measurement just to the nearest pixel. This results in an
error δθpix. Because of these two errors one is assigning a Q equal to Q + (δθpoint +
δθpix) · ∇Q + · · · to a given pixel rather than Q. same is valid for U

As a result the Stokes parameters at a pixel in the final map are something like:

Q̂ = Q + 1/N
∑

i

(δθpoint + δθpix)i · ∇Q + · · · , (9)

where the sum is over the N times the pixel was measured (assuming for simplicity
that they all went to the map with equal weights). The same formula applies for U .

We will consider both contributions separately in the next sections.

2.1 Pointing noise in each scan

Assume the map is produced by scans of length L over a time tsc. At the edge of
each scan one gets the pointing with a star camera and extrapolates using gyros
to points inside the scan. The pointing error in each component across the scan is
given by:

δθ = δx0 +
t

tsc
(δxL − δx0) +

∑
n

an sin knt, kn =
nπ

tsc
(10)

where δx0, δxL and an are random variables and t is time. We are calculating the
errors in the position of the center of the focal plane along the scan. Detectors are
then referenced to that.

Under the assumption that the error in the gyros is a random walk the ans are
independent Gaussian random variables. The statistical properties of δx0 and δxL

are mainly determined by the properties of the star camera system. In particular:
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with wg a property of the gyros, the square of the random walk dispersion for a
given time interval, and tscan is the time taken by the scan to cross the distance L.

If the pointing error of the star camera is given by σsc then the inverse of the
δx0-δxL covariance matrix is:
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)
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The above formulas can be used to generate pointing error time streams that can be
incorporated to full scale simulatons. They are valid for both x and y components



of the deflection angle. A derivation of the above formulas can be found in section
2.5.

The variance of the error for one pixel and one scan is:
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We show a plot of this function in figure (4). A similar formula can be obtained for
the correlation of δθ at two points during the scan. Note that the two errors are
highly correlated. This is so because the star camera noise affects all points and due
to the random walk nature of the gyros, its errors are dominated by the lowest n
modes (σ2

n ∝ n−2).

2.2 Averaging down the pointing noise

Although the errors in each scan are highly correlated, we will take the noise in
different scans to be uncorrelated. As a result there could be significant averaging
down of the error as each pixel is scanned multiple times. We will estimate this
averaging in this section. The results depend on details of the focal plane
and scan. Here we will make some crude assumptions to be able to
put some numbers. We can probably put the full formulas into Nicola’s
pipeline if the following arguments need to be made more precise.

As figure 4 shows the rms pointing error varies across the scan. If a pixel is hit by
multiple scans it will probably be hit at different points along the scan. To simplify
matters we will just replace the x dependent rms by the corresponding average.
This will simplify expressions. Note however that I will not assume that the errors
along the scan are all independent. In essence I will work in the opposite limit, just
assume that all pixels in a given scan have the same pointing error.

The average variance across the scan is:
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For our current gyros this gives (σ2
θ)1 = (9.5 arcsec)2 and for the better ones

(σ2
θ)1 = (4.3 arcsec)2. If we now assume that a pixel is observed many times during

independent scans, and that in each scan it is measure by δNd detectors, the final
variance at that pixel will be:
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Now we need to estimate how Neff .
Consider a given scan. As the focal plane moves, each detector will swipe a

line of length L and width dxpix, where dxpix is the linear size of each pixel. If the
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Figure 4: RMS pointing error in arcseconds as a function of position across the
scan. The star camera error assumed is σsc = 6 arcsec. the top curve is for wg =
0.0667 deg/

√
hr and the bottom one for wg = 0.001 deg/

√
hr.



sampling rate is fast enough then all of the solid angle L× dxpix will be covered by
that detector. If the sampling rate is low, only a fraction f = dxsample/dxpix of the
pixels in the row will get hit, where dxsample is the separation between samples.

On a given scan all the different detectors in the focal plane will share the
same pointing error. The combination of all detectors will swipe a larger solid
angle as the scan proceeds that a single detector. How much larger depends on the
location of detectors across the focal plane, as the paths of multiple detectors in the
same row will overlap. For simplicity I will just consider square array of detectors,
N1 ×N1 = Ntotal. Thus in one scan the total solid area covered by all the detectors
dΩ is:

dΩ = N1 × L× dxpix × f. (16)

After the full flight the total solid angle covered will be:

Ω = N1 × L× dxpix × f × tflight

tscan

. (17)

The above estimate is not quite correct because two neighboring scans share one
star camera pointing so they are not fully independent. To the extent that the noise
is dominated by the gyros the above approximation is correct. If not one should
modify the formulas to take into account the correlations. The change will not be
large, should not decrease Neff by more than a factor of 2.

To estimate Neff we will assume that Neff is the same for all pixels in the final
map. Of course this is not really true. If we call Ωmap the solid angle of the final
map then NeffΩmap = Ω, so
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For our current gyros we get σθ = (σθ)1/
√

Neff ≈ 0.4 arcsec, extremely small.
One can also estimate the average hits per pixel

Nhits = Ωpix × Ω−1
map ×Ntotal × fsample × tflight

≈ 73000
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×
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2.3 Comparison with the scanning code

Using the EBEx scanning code in which the arrangement of the seven decagon
wafers has been modelled, one can obtain the hit and the scan crossing counts in
order to directly check scaling relations of Eq. (18) and Eq. (19). Figure 5 shows an
example of a scan crossing count map for the 150GHz channel (396 detectors) using
the parameters tflight = 0.9day, tscan = 25.7s (tchop = 51.4s), fsample = 300Hz, two



Figure 5: An example of a scan crossing count map for the 150GHz channel (396
detectors) using the parameters tflight = 0.9day, tscan = 25.7s (tchop = 51.4s),
fsample = 300Hz, two focalplane hits per sample, dxpix = 1′ and L = 17.7o. The
total scan area is 240deg2 giving an average scan crossing count of 250 per pixel.



focalplane hits per sample, dxpix = 1′ and L = 17.7o. The total scan area is 240deg2

giving an average scan crossing count of 250 per pixel.
The scaling with pixel size of the hit and scan crossing counts is shown in figure

6 for the three EBEx channels. The scaling relation for the average hit count,
Eq. (18), in is perfect agreement with the results from the scanning code, being
a simple average of the total number of hits. The scaling relation for the average
scan crossing count Eq. (19) is also in very good agreement with the results from
the scanning code. In order to partially fix up the square array approximation
above, N1 has been replaced by the number of rows of detectors parallel to the
scanning direction (59, 42, and 25 in the case of the 150, 250 and 420GHz detectors
respectively).

2.4 Pixelization noise

If one is using a nearest neighbor interpolation the error in a Stokes parameter for
a given δθpix is

δQ = δθpix · ∇Q. (20)

If we assume that δθpix is uniformly distributed inside the pixel and that the linear
size of a pixel is dxpix then
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so that

σθ = 17.3 arcsec
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1′
. (22)

Although this is rather large, if its coherence length is the pixel scale, then the effect
is quite managble.

This error creates a B power spectrum:
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where lp is the pixel scale if the pixelization error is uncorrelated from pixel to pixel.
For the EBEX beam ∫ dl

l

l4CE
l

(2π)
= (0.9 µK/arcmin)2. (24)

We can also estimate lp =
√

2π/dxpix = 8617× (1′/dxpix). For this values of lp the
effect is much smaller than the pointing error contribution. This is so because even
though σθ is similar (a bit smaller because of the 12 in equation (21)) the effect on
the power spectrum scales as l2p and lp is more than ten times larger than the 500
assumed for the pointing.

Although this effect seems very manageable, it would become larger if the co-
herence is larger than the pixel scale. I don’t think that this will be the case. In



Figure 6: Scaling relations for the average hit and scan crossing counts per pixel.
The numerical code (points) and scaling relations Eq. (18) and Eq. (19) (solid lines)
are in good agreement.



any case, if it were so, going above the nearest grid point interpolation will make
the pixelization error disappear.

A final comment on the coherence length of the pointing error. Along the direc-
tion of the scan the coherence is as large as the scan itself as the random walk is
dominated by the first few modes. In the direction perpendicular to the scan how-
ever things are not that coherent. This is so because is a given scan one covers only
a length N1dxpix which is smaller than the size of the focal plane. So to the extend
that this is true, that only a small fraction of the size of the focal plane is covered
as its sweeps across, the coherence in that direction will not be large. Once all the
scans are put together the coherence will be some sort of average of the coherence
in both directions. A more detailed analysis would be required to estimate this. It
does not seem necessary given the smallness of the effect.

2.5 Derivation of the pointing noise formulas

Assume that the gondola is moving along the x axis and that measurements are
take taken when the position is xi at times ti. At i = 0 and i = N there is a
measurement by the star camera. Between those the gyros are used. I will assume
that the error in the star camera is Gaussian with variance σ2

sc and that the gyros
measure difference in position with successive positions with variance σ2

g .
After the scan the reconstructed pointing is x̂i = xi + δxi. Under the above

assumptions the χ2 is:
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We can now go to the continuous limit and use time t to label the position along
the scan. We will also use that σ2

gi = wgdti, where dti is the time between samples
and wg is a property of the gyro. We get:
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We now expand δx(t) as,
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where tsc is the time needed to cross between one side of the scan and the other. So
that
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Plugging this into the χ2 equation we get,
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This explains why we choose this particular expansion, it makes all the an inde-
pendent. The variance of the different random variables can be read-off from this
expression.


