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Structure of the talk:

1. Role of MHD turbulence in turbulent world
2. Foregrounds are turbulent and magnetic turbulence produces polarized fluctuations

3. Importance of Alfven Mach number for CR research
4. Higher resolution polarimetry + Gradient Technique to find Alfven Mach number.



Structure of the talk:

1. Role of MHD turbulence in turbulent world



We live in a turbulent world
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We live in a turbulent world
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It would take 4 month for coffee to get sweet if not for turbulence




MHD turbulence plays crucial role for key astrophysical processes
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MHD turbulence plays crucial role for key astrophysical processes

T fmane

We discuss only the dependance of CR propagation on Alfven Mach number M, =\delta B/B



Structure of the talk:

2. Foregrounds are turbulent and magnetic turbulence produces polarized fluctuations



Are foreground E/B, TE correlations arise from turbulence?
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Are foreground E/B, TE correlations from turbulence?
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Abstract

Perhaps the most intriguing result of Planck’s dust-polarization measurements is the observation that the power in
the E-mode polarization is twice that in the B mode, as opposed to pre-Planck expectations of roughly equal dust
powers in the E and B modes. Here we show how the E- and B-mode powers depend on the detailed properties of
the fluctuations in the magnetized interstellar medium (ISM). These fluctuations can be decomposed into slow, fast,
and Alfvén magnetohydrodynamic (MHD) waves, which comprise a complete basis that can be used to describe
linear fluctuations of a magnetized fluid. They can alternatively be decomposed in terms of one longitudinal and
two transverse components of a fluid-displacement field. The intensity (7) and E- and B-mode amplitudes induced
by each of the three types of waves, in both decompositions, are then calculated. To illustrate how these tools can
be applied, we consider a toy model of the ISM in which dust traces a single component of plasma, and obtain the
EE/BB ratio and TE correlation for several ansatzes for the power in slow /fast/Alfvén waves and in longitudinal /
transverse waves. Although our model may be too simplistic to properly describe the nonlinear structure of
interstellar magnetic fields, we find that the observed EE/BB ratio (and its scale invariance) and positive 7E
correlation—as well as the observed power-law index for the angular spectrum of these fluctuations—are not easily
accommodated in terms of simple MHD turbulence prescriptions for the expected powers in slow, fast, and Alfvén
waves. We speculate that the ~0.1-30 pc length scales probed by these dust-polarization measurements are not



Yes, E/B, TE correlations are from turbulence!

Statistical properties of galactic CMB foregrounds: dust
and synchrotron
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ABSTRACT

Recent Planck observations have revealed some of the important statistical proper-
ties of synchrotron and dust polarizations, namely, the B to £ mode power and
temperature-E (TE) mode cross-correlation. In this paper, we extend our analysis in
Kandel et al. (2017) that studied B to F mode power ratio for polarized dust emission
to include TE cross-correlation and develop an analogous formalism for synchrotron
signal, all using a realistic model of magnetohydrodynamical (MHD) turbulence. Our
results suggest that the Planck results for both synchrotron and dust polarizations
can be understood if the turbulence in the Galaxy is sufficiently sub-Alfvénic.| We also
show how B to F ratio as well as the TE cross-correlation can be used to study media
magnetization, compressibility, and level of density-magnetic field correlation.
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magnetization, compressibility, and level of density-magnetic field correlation.
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3. Importance of Alfven Mach number for CR research



M, determines the perpendicular diffusion of cosmic rays in the Milky Way

Realized by Jokipii & Parker 69, Jokipii 73 but turbulence model was not right

The study with modern understanding of MHD turbulence is in AL& Vishniac 99

Strong subAlfvenic turbulence at scales s<I,

rans e€sults in superdiffusion:

L7l

At scales s>

trans

results in ordinary diffusion:
¢% ~ sLM;.

Differs from the textbook (see Jokipii & Parker 69) M,2 dependence



The dependence on forth power of Alfven Mach number is
confirmed numerically
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The dependence on forth power of Alfven Mach number is
confirmed
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Streaming instability limits the parallel diffusion of cosmic rays

Gamma-ray

/ emissions

X-ray AL16 obtained the expressions
emissions \ . Microwave for CR instability as a function
emissions of MA

Y S

Galactic

center




AL16 “new leaky box“ model is valid if the level of
turbulence in Halo is small

CRs stream in the disk where turbulence is transAlfvenic and randomize by
streaming instability in the halo.

Low M,
New understanding: Halo, damping by weak turbulence, /

low turbulence level, no streaming

/ My >1

turbulence, streaming is present Halo

Disk



Structure of the talk:

4. Higher resolution polarimetry + Gradient Technique to find Alfven Mach number.



M, can be estimated from tangling of magnetic field inferred from polarimetry

The higher the resolution, the better







lllustration of Velocity Gradients: Velocities in MHD turbulence are
perpendicular to the local magnetic field direction in diffuse media

velocity
lsocontours

MHD subAlfvenic simulations
AL & Yuen 2018



Radically new way to study magnetic fields: Velocity Gradients

GALFA-HI
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3D Field Tracing using VGT with Galactic Rotation Curve

Casanova & Lazarian (2018), Yuen & Lazarian (in prep)

1.8kpc < LOS distance < 2.0 kpc
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Testing the obtained 3D B-field distribution with starlight polarization

1.00
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2;2 Star polarization versus predictions with our 3D

0.58 model of galactic magnetic field. This

0.47 demonstrates that the model is correct!
0.37
0.26
0.16
0.05
-0.05
-0.16
-0.26
-0.37
-0.47
-0.58
-0.68
-0.79
-0.89
-1.00

Y [kpc]

AM

Gonsalvez-Casanova & AL 2018



PerA: 2CO
VChGs: AM=0.49

PerA: ¥CO
VCGs: AM=0.61

PerA: “CO
VChGs: AM=055

PerA: BCO
VCGs: AM=0.50

VelaC: “CO
VOhGs: AM~0.53

apamme ees

A DD

265.91 265.24°
Galactic Longitude Galactic Longitude
VelaC: »CO VelaC: BCO

VOGs: AM=0.50 VOhGs: AM=0.63

Taurus: “CO
VOChGs: AM=0.51

Taurus: 2CO
VOGs: AM=0.49

7 683"

R.A.
Tausus: '“"CO
NChGs: AM=0.63

R.A.
Taurus: “CO
VOCGs: AM=0.59

K.H Yuen @ NTHU, Hsinchu, Taiwan

NGC1333: OO

NGC1333:
VOGs: AM=0.54

Carina HI
VOhGs:AM=0.45

"
VOGs:AM=0.40

NGC1333: ¥CO
AM~0.48

132

RAL
NGC1333: €O
AM=0.%0

ApmpE] N

apupe e

Wad: 500 Wak: o
VOGs: AM=0.54 VORGs: AM=0.57
.
F 20
' 1
e
a8
15e°
o
¥
‘ P
e
130
res
. e
- T —T
LA RA
WAy (%0 Wad: "0
VOGs: AM 069 NOWGs: AM=0.61
Gradients NS
: Magnetic Field
+
Serpens: 2CO Serpens: 2CO
VOGs: AM~061 VOhGs: AM=0.62
. 146"
L9
108 ¥
o
146"
L
1ot ¥
o
0
» oA
Serpens: "CO Serpens: "CO
VOGs: AM~0.54 VOhGs: AM=0.45

Velocity Gradient Technique

1st VGT Survey on
molecular clouds

Comparing Gradients with
Polarization in both low-mass

and high-mass molecular

clouds
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Synchrotron Intensity Gradients: another new way to study B
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b [dag]

Tracing magnetic field without measuring polarization
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Polarization gradients allow 3D tomographic studies of magnetic fields

Intermediate region

Contributing region LZ‘," Ly Noise-like region
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Example: 3D B-field distribution restored from synthetic data

An additional information is coming from gradients of N2
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Blue- underlying 3D vectors, Red — vectors restored with the technique



Complementary Nature:

1. If we know the magnetic field structure with the gradient technigue we can predict the polarization from dust.
2. If we know the magnetic structure and see the variations in synchrotron with frequency, we can study CR propagation.

3. Variations of structures obtained with gradients and polarization give insight into star formation.

DEC (J2000)

15 20 25 30 35
RA (J2000)



Summary

velocity
Isocontours
\

\

Gamma-ray

/ emissions
X-ray

emissions \ Microwave
. B — 3
. emissions

Better understanding of magnetic field structure means better models of CRs



Perpndicular diffusion of cosmic rays is dominated superdiffusion
(superballistic behavior) as CRs following magnetic field

<(5y)2> ~ ajg Prediction in AL & Vishniac 1999

Superdiffusion acts on scales x less than
the injection scale of MHD turbulence
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in the Galaxy is about 100 pc



Superdiffusion changes the accepted formalism for parallel
and perpendicular shock acceleration

K1 1

o = 1T Oonri)? Accepted expression

Superdiffusion y~x32




Initially we had only one superhero: Tracing of magnetic field in 2D by gradients

RED : Velocity Gradients
Yellow: Magnetic field

GALFA data
compared with
Planck polarization

4
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30
RA (j2000) Yuen & AL 2017



3 Superheroes of Gradient Technique
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Can study 3D B-fields, shocks, regions of gravitational collapse



Present day: 3D distribution of B-fields is cool!

Using Galactic rotation curve PR
/ \ For molecular
clouds in disk

Using different emission species

With Velocity Channel Gradients

With Synchrotron Polarization Gradients mssss)  Using Faraday depolarization

Intermediate region

Contributing region Lz," ,’2,1 Noise-like region
VP, : Mean field from O to L, X )
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Velocity gradients provide unique ways to study B-fields: high velocity clouds as
an example

No other way to study these fields.

B-field of Smith cloud




Distribution of M, with velocity gradient distribution function of galactic HI

V| is turbulent velocity
V, is Alfven velocity
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GALFA-HI

Determining M, using gradient amplitudes
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Density structures are mostly perpendicular to magnetic fields for supersonic

flows
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Density fluctuations are
a good tracer of shocks



DEC (J2000)

Intensity Gradient Technique: Application of all our tools, e.g sub-block
averating, to intensity gradients

GALFA data
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Ongoing work on the survey of galactic B-fields

GALFA-HI
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Velocity gradients are perpendicular to local direction of B-field in
diffuse regions and parallel to B-field in regions of gravitational collapse

The change of the dispersion of gradient allows us to identify the regions where
the direction of gradients flips 90 degrees (see AL & Yuen 2018)

Yuen & AL 2018




The procedure of identifying collapsing regions
works well with observations

B-field from Velocity gradients B-field from Planck

Taurus cloud
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| am happy to discuss with you MHD turbulence and its implications as well
as new ways to study magnetic fields :

lazarian@astro.wisc.edu DB: hdfaa.012
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