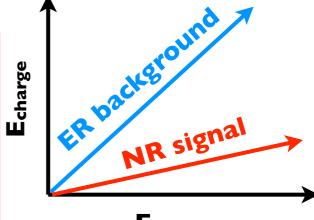

GEODM SCREENING REQUIREMENTS

JODI COOLEY SOUTHERN METHODIST UNIVERSITY GEODM COLLABORATION


THE BIG PICTURE

Use a combination of **discrimination** and **shielding** to maintain a <1 event expected background experiment with low temperature semiconductor detectors

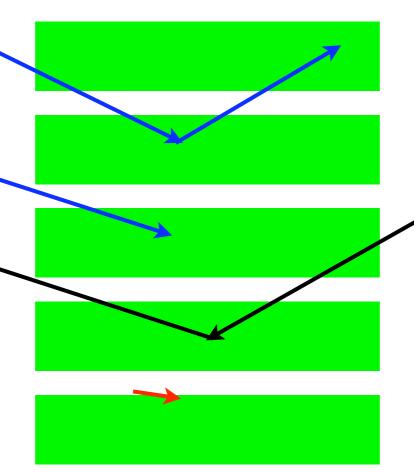
Discrimination from measurements of ionization and phonon energy.

Ephonon

Keep backgrounds low as possible through shielding and material selection.

PROGRAM OVERVIEW

- CDMS II (finished)
 - Last cdms II data taken March 18, 2009
- SuperCDMS @ Soudan (funded)
 - March 19, 2009: warm up to install and commission first SuperCDMS detectors
 - Currently commissioning detectors for an engineering run
 - Fabrication of remaining detectors for SuperCDMS Soudan (~12 kg Ge) project underway
- SuperCDMS SNOLAB (PASAG endorsed)
 - Project proposal in 2011 for ~100 kg Ge experiment
- GEODM (NSF DUSEL S4 funded)
 - 1.5 ton Ge experiment [proposed for DUSEL]


BACKGROUND TYPES

PHOTONS

- PRIMARILY COMPTON SCATTERING (BROAD SPECTRUM UP TO 2.5 MEV)
- SMALL NUMBER FROM PHOTOELECTRIC EFFECT (LOW ENERGY)

SURFACE EVENTS

- RADIOGENIC: PHOTONS/ELECTRONS EMITTED MOSTLY FROM ²¹⁰PB DECAYS
- PHOTON INDUCED: INTERACTIONS OF PHOTONS OR PHOTO-EJECTED ELECTRONS IN DEAD LAYER

NELITRONS

- RADIOGENIC: FISSION
 AND α-N INTERACTIONS
 MATERIALS
 SURROUNDING
 DETECTORS
- COSMOGENIC: SPALLATION OF NUCLEI IN SURROUNDING MATERIALS BY COSMIC RAYS

BACKGROUND TARGETS

Background Type	Current Level [/kg/d]	Desired Level [/kg/d]
Bulk EM	296	45
Surface EM	3.4	0.10
Radiogenic Neutrons	I.2 x 10 ⁻⁴	4.0 x 10 ⁻⁷

EM BACKGROUNDS

Photon Backgrounds

- Significant reductions due to surface area/volume ratio via increased detector mass
- Improvement in rejection capability of advanced iZIP detector design
- Beta Backgrounds (Surface Events)
 - Significant reduction due to surface area/volume ratio via increased detector mass
 - Improvement in rejection capability of advanced iZIP detector design
 - No reduction in ²¹⁰Pb needed beyond what has been achieved with the CDMS II detectors

6

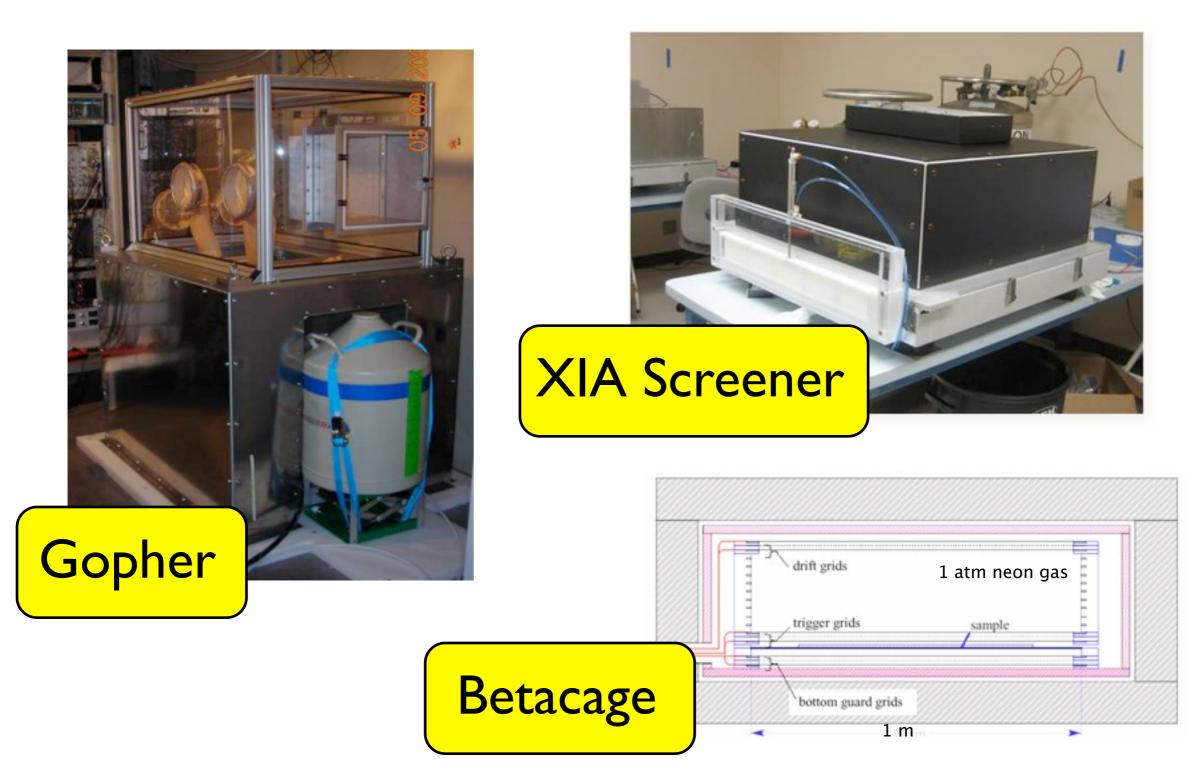
BIGGEST CONCERNS (SNOLAB & GEODM)

- Copper Will OFHC copper be good enough or do we need electroformed copper to meet the requirements for radiogenic neutrons.
 - Copper is used as a gamma shield and for the cryostat.
- Which moderator to use.
 - Gammas resulting from U/Th (in poly) not such a big issue as it would reside outside the shield.
 - Neutrons from U/Th could be troubling if they are emitted close in to the inner edge of the moderator
 - Study of contamination levels in poly
 - Consideration of using a water tank or active scintillator moderator

RADIOGENIC NELTRON BACKGROUNDS

4	GEODM Goal: x 10 ⁻⁷ [single n/kg/	d] Measured Level CDMS II	Predicted bkgd [single n/kg/d]
	Cryostat Cu	0.2 ppb U 0.6 ppb Th	7.4 x 10 ⁻⁵
	Pb in shield (upper limit)	(50 ppt U) (200 ppt Th) [I ppt U/Th Heusser]	(3 × 10 ⁻⁴)
	Polyethylene (upper limit)	0.2 ppb U 0.2 ppb Th	I.6 x 10 ⁻⁵

WHAT ARE WE LISING?


- Gamma Screening at Soudan (Gopher)
 - Sensitivity: ~1 mBq/kg
 - Limited by ²¹⁰Bi in shield, rebuild planned for 12/2010
- Alpha Screening at Fermilab (XIA prototype)
 - Sensitivity: ~ 0.002 counts/cm²/day
 - Study radon plate-out, Copper Cleaning, Witness Samples, etc.
- ICPMS
 - ~5 ppt U/Th (Laurentian University), limited resources

IN THE FUTURE WE PLAN TO ADD

• Betacage

- Direct counting of surface contamination
- Prototype starts summer 2011 in Soudan
- Radiopure version expected Oct 2011 with sensitivity ~10⁻⁵ counts/kg/cm²/day for $E_{\beta} \approx 0$ 200 keV
- Second Alpha Screener
 - Initially located at SMU
 - Production model with adjustable inner electrode.

OUR SCREENERS

WHAT WOULD WE LIKE FOR EARLY SCREENING?

- Betacage
- HPGe counters
- ???