Neutron Backgrounds at SNOLAB

SNOLAB

AARM S4 Collaboration Meeting SLAC; March 4, 2013

- Rock neutrons: (α, n) , spontaneous fission, (γ, n)
- Muon induced neutrons
- Measurements and simulations
- Radio assay of materials
- Examples: SNO, PICASSO, COUPP

SNOLAB

- Fast neutron flux: $\sim 4000 \text{ neutrons}/\text{m}^2/\text{day}$
- Thermal neutron flux: $4144.9 \pm 49.8 \pm 105.3$ neutrons/m²/day muons: 0.27 m²/day radon: 130 Bq/m³
 - 2 km underground near Sudbury, Ontario
 - ultra-low radioactivity background environment Class 2000
- Physics programme focused on neutrino physics and dark matter searches Eric Vázquez-Jáuregui AARM meeting

- Norite: O, Si, Al, Fe, Ca, Mg, Na, K
- Shotcrete: O, Si, Ca, H

	Norit	te
Isotope		Neutron
	Concentration	$\operatorname{production}$
	(ppm)	$(n/y/cm^3)$
Th	5.10	8.13
U	1.10	3.51
U-fission		1.19
Total		12.83

Shoter	rete
	Neutron
Concentration	production
(ppm)	$(n/y/cm^3)$
2.4	0.99
1.2	1.05
	1.03
	3.07

Rock neutrons

Rock samples analyzed:

- Norite: new lab areas agree with SNO samples
- Shotcrete: new areas slightly higher for Uranium and more than 2x for Thorium
- 90%: (α,n) on light elements
- 10%: ²³⁸U spontaneous fission

Neutral Current Detectors (NCDs):

- cylinder composed of a thin layer of Nickel (^{58}Ni)
- filled with a mixture of gas (mixture by pressure is 85%:15% ³He:CF₄)
- used by the SNO experiment

Most of them being used by HALO for supernova detection

Neutral Current Detectors (NCDs):

- 4 2m-long proportional counters used
- sensitivity: 0.00003 mRem/hr

Counters can be deployed inside shielding structures to determine how effective the shielding is at stopping neutrons

PICASSO water shielding:

- Input: (α, n) in norite
- Propagate through 0.5 m of rock
- Different shielding layers (water)

Good agreement between data and simulation

Efficiency=99.8%

	5 regions combined(Simulation)	Measurement (Data)
0/1	$0.766{\pm}0.021$	1.430 ± 0.018
1/2	$1.161{\pm}0.031$	1.443 ± 0.047
2/3	1.437 ± 0.045	1.432 ± 0.147
0/WT	52.114 ± 8.362	$50.287{\pm}4.066$
WT/(WT+1)	1.913 ± 0.515	$2.071 \pm 0.0.615$
(WT+1)/(WT+2)	1.438 ± 0.476	2.270 ± 0.746
(WT+2)/(WT+3)	2.280 ± 0.868	1.298 ± 0.275
1- WT/0	$0.981{\pm}0.003$	0.980 ± 0.002
1-((WT+1)/1)	$0.992{\pm}0.002$	0.986 ± 0.004
1-((WT+2)/2)	$0.994{\pm}0.002$	0.991 ± 0.001
1-((WT+3)/3)	$0.996{\pm}0.001$	0.990 ± 0.002

Several MC inputs and combinations of NCD shielding with/without water tanks for PICASSO

COUPP4 bubble chamber:

- Dark matter detection with CF_3I
- 4kg detector operating
- 60kg being installed (propose to measure neutron rate without shielding)

0.3 cts/kg/day (data) 0.6 cts/kg/day (GEANT4)

statistics limited, not a concern as background (20" of water as shielding)

COUPP4 bubble chamber:

- Measurement of gamma spectrum in J-drift
- 1.78 kg low-background NaI(Tl) crystal
- Photonuclear background from ${}^{127}I(\gamma,n){}^{126}I$ and photodissociation of deuterium in the water and glycol

Detector	Events/year
COUPP4	0.14
COUPP60	0.28
COUPP500	1.2
	(1 m water shielding)

Quantity	Night value	Day value	Asymmetry ratio (%)
Event rate (day ⁻¹)	3.50 ± 0.09	3.56 ± 0.10	-1.83 ± 3.81
Mean energy (MeV)	5.78 ± 0.06	5.67 ± 0.06	1.96 ± 1.49
Energy width (MeV)	1.47 ± 0.06	1.47 ± 0.06	0.00 ± 4.69
Mean isotropy (β_{14})	0.311 ± 0.004	0.312 ± 0.005	-0.24 ± 2.03
Capture time (ms)	4.9 ± 0.3	4.6 ± 0.3	7.27 ± 8.36

Eric Vázquez-Jáuregui

HPGe detectors:

- 63 mm \times 67 mm crystal
- Efficiency: 55%, relative to 7.62 cm dia \times 7.62 cm NaI(Tl) detector for 1332 keV γ -rays from a ⁶⁰Co source 25cm from the crystal
- Resolution: 1.8 keV FWHM
- Shielding: 2" Cu + 8" Pb
- Nitrogen purge at $\sim 2 L/min$

HPGe detector:

- Measure activity in materials
- Data used as input to calculate $(\alpha,n), (\gamma,n)$

- Two new low-background high purity Ge counters: p-type coaxial and well
- 3 crystal detector moved from 4600 to 6800 level

Isotope	1 Bq/kg	1 ppb	Sensitivity for Standard Size Samples	Typical for Earth's Crust
²³⁸ U	81 ppb	12 mBq/kg	~ 1 mBq/kg ~ 0.1 ppb	37 Bq/kg 3 ppm
²³² Th	246 ppb	4.1 mBq/kg	~ 1.5 mBq/kg ~ 0.3 ppb	45 Bq/kg 11 ppm
⁴⁰ K	32 ppm	0.031 mBq/kg	~ 21 mBq/kg ~ 0.7 ppm	800 Bq/kg 2.5 %

- Several measurements for neutron backgrounds during the SNO experiment
- Measurements being performed in the new areas of the lab
- Input from data used for simulations in dark matter experiments
- Low background counting lab under construction