

University of Alberta

B. Beltran, P. Gorel, A. Hallin, S. Liu, C. Ng, K.S. Olsen, J. Soukup

Boston University

D. Gastler, E. Kearns

Carleton University

M. Bowcock, K. Graham, P. Gravelle, C. Oullet

Harvard University

J. Doyle

Los Alamos National Laboratory

R. Bourque, V.M. Gehman, J. Griego, R. Henning-Yeomans, A. Hime, F. Lopez, J. Oertel, K. Rielage, L. Rodriguez, S. Seibert, D. Steele

Massachusetts Institute of Technology

L. Feng, J.A. Formaggio, S. Jaditz, J. Kelsey, J. Monroe, K. Palladino

National Institute Standards and Technology

K. Coakley

University of New Mexico

M. Bodmer, F. Giuliani, M. Gold, D. Loomba, J. Matthews, P. Palni

University of North Carolina/TUNL

M. Akashi-Ronquest, R. Henning

University of Pennsylvania

T. Caldwell, J.R. Klein, A. Mastbaum, G.D. Orebi Gann

Queen's University

M. Boulay, B. Cai, M. Chen, S. Florian, R. Gagnon, V. Golovko, P. Harvey, M. Kuzniak, J. Lidgard, A. McDonald, T. Noble, P. Pasuthip, C. Pollman, W. Rau, P. Skensved, T. Sonley, M. Ward

SNOLAB Institute

M. Batygov, F.A. Duncan, I. Lawson, O. Li, P. Liimatainen, K. McFarlane, T. O'Malley, E. Vazquez-Jauregi

University of South Dakota

V. Guiseppe, D.-M. Mei, G. Perumpilly, C. Zhang

Syracuse University

M.S. Kos, R.W. Schnee, B. Wang

TRIUMF

P.-A. Amaudruz, A. Muir, F. Retiere

Yale University

W.H. Lippincott, D.N. McKinsey, J.A. Nikkel, Y. Shin

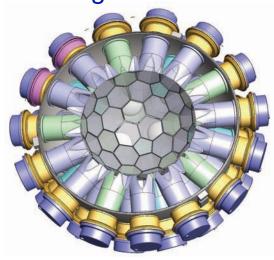
DEAP/CLEAN

1. MiniCLEAN

- 150 kg fiducial / 500 kg
- Assembly in SNOLAB Fall 2011

2. DEAP-3600

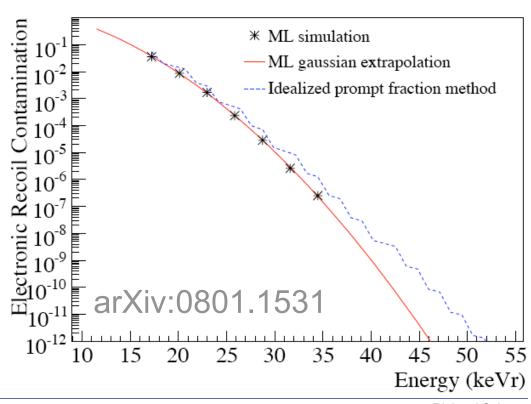
- 1000 kg fiducial/ 3600 kg
- Funded by CFI; assembly in SNOLAB Summer 2012


3. CLEAN

- 10 ton fiducial / 40 ton
- v physics too

LAr (LNe) WIMP-search

kHz/ton 39Ar background


◆~10⁹ -10¹¹ rejection of electron-recoils based on timing of scintillation light (PSD)

- Use fiducialization to mitigate other dominant backgrounds
 - ◆External neutrons (dominated by (a,n) in PMT glass)
 - Alphas and their recoiling nuclei on detector surface

Depleted Argon

- Key advantage of design is that argon depleted in ³⁹Ar is not needed
 - Fast signal (10 μs) so pileup is issue only at ~100 ton
- However, detector threshold, efficiency set by requirement of good enough pulse-shape discrimination (PSD) of ³⁹Ar
 - Depleted argon would increase sensitivity at each phase
 - Lower data rate would make experiment and calibrations easier
 - Depleted argon could allow even more massive experiment
- MOU with Princeton depleted-argon group

External Neutrons (and Photons)

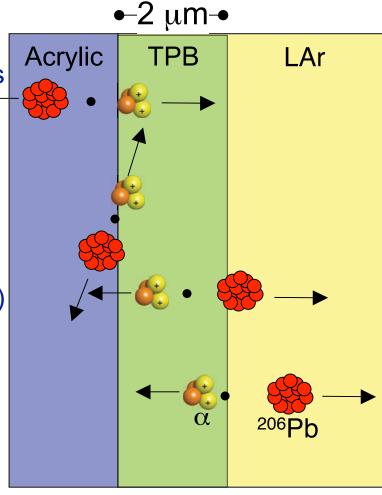
- 25% fiducial-volume cut is more effective at rejecting external backgrounds for larger detectors
 - Most screening requirements within factor of 4 for all phases
- Expected neutron/photon backgrounds dominated by PMTs
 - Lower-radioactivity light detectors may allow fiducial volume to be enlarged, increase experiment sensitivity
 - Do not need ultra-sensitive Ge screening in most cases
- Need moderate Ge screening of many parts
 - Ensure phototubes dominate background

MiniCLEAN Gamma Screening

	238 U (mBq/kg)	232 Th (mBq/kg)	40 K (mBq/kg)	137Cs (mBq/kg)	60Co (mBq/kg)	54Mn (mBq/kg)
Whole PMT R5912	905+/-25	471+/-15	2986+/-175	2+/-3		
PMT Glass R5912	1274+/-34	692+/-21	3623+/-214	2.4+/-4	1.3+/-2.3	
PMT metal R5912	15+/-7	46+/-11	2412+/-270	7.5+/-6.9	17 +/-5	11+/-5
PMT ceramic R5912	1221+/-103	383+/-72	20736+/-1969			
OV dome	0.9+/-0.2	0.6+/-0.1	<1.28	<0.09	3.1+/-0.2	1.3+/-0.2
OV Main Flanges	3.1+/-1.2	2.8+/-1.2	6.2+/-5.8	<0.87	23+/-2	5.6+/-1.3
OV Cylinder sections	0.92+/-0.74	3.5+/-0.9	<3.65	1.2+/-0.7	20+/-2	4.9+/-0.9
OV-B to J, & T flange	0.10+/-0.13	0.69+/-0.18	<1.01	<0.11	5.3+/-0.4	1.1+/-0.2
OV TIG weld rod	1.0+/-0.7	2.8+/-0.8	<1.45	<0.9	3.8+/-0.7	

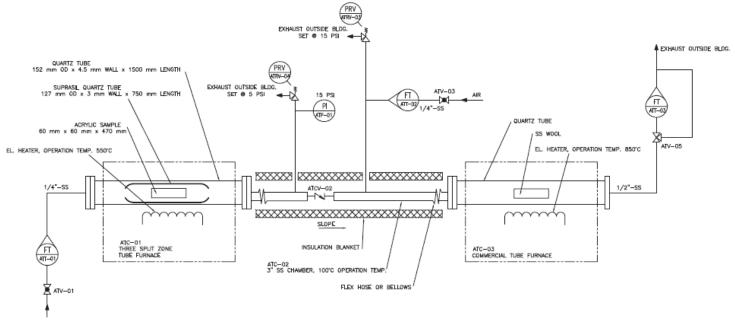
A small subset...not the full list! (~50 so far, ~100 total)

 Still need to screen inner vessel parts, calibration system (mostly SNOLAB, some Kimbalton, ...?)


Alphas on Surfaces from Radon Daughters

 If alpha loses most of its energy in acrylic, can appear in energy region of interest (& pass PSD cut, assumed here)

4 Problematic classes


 Contaminant in acrylic (~1% of decays in first 40 μm)

- Bulk contamination or radon diffusion
- Requires <ppt U/Th screening
- Radon-daughter plateout in acrylic surface (~0.01% of decays)
 - Requires surface α/β screening
- Contaminant in TPB (~15% of decays)
 - Requires <ppt g/g U/Th screening
- Radon-daughter plateout or 210Pb desorption/adsorption onto TPB surface (0.5%-20% of decays)
 - Requires α/β surface screening, μ Bq radon emanation of process systems

Plans for Acrylic Screening

- For bulk contamination, previous SNO limits ~3x too high
 - To achieve desired sensitivity, two-furnace system and new Ge well detector are being set up, plan measurements in 2011

- For surface contamination, test of MiniCLEAN cutting of final mm has been tested successfully with spike, but not to desired absolute sensitivity
 - Plan to retest in coming year with XIA α-detector and/or BetaCage prototype