Simulation of Muon-Induced Neutrons for the Neutron Multiplicity Meter in the Soudan Cavern

Melinda Sweany

Lawrence Livermore National Laboratory

June 28, 2012

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Muons from MUSIC/MUSUN

- 60 million muon tracks generated on cube
- ► +x direction = NORTH
- +y direction = WEST
- \blacktriangleright +z direction = UP

Melinda Sweany (LLNL)

Muons from MUSIC/MUSUN

Implementation into NMDSim

•	Geant4.9.5.p01 with Shielding	Material	Percentage (%)
	physics list (and patch)	SiO ₂	51.0
	NMM Detector simulation has +x as WEST, symmetric in y (+NORTH) \rightarrow exchange x,y coordinates NMM offset in detector coordinate system (x,y,z) = (5.94,1.98,1.81) meters	AI_2O_3	15.0
		CaO	9.0
		FeO	8.6
		MgO	6.5
		H_2O	2.7
		Fe_2O_3	2.6
		Na_2O	2.5
		TiO ₂	1.1
•	Muon propagate through 4 meters of Soudan Rock	K ₂ O	0.4
		CO ₂	0.3
•	Save particle tracks as they pass	MnO	0.2
	through rock/cavern boundary	P_2O_5	0.1
	inward only		

K.Ruddick, MINOS Internal Note, NuMI-L-210 (1996)

Melinda Sweany (LLNL)

Muons/Neutrons Crossing into Cavern

- Muon passing through top sheet
 - ▶ z > 5499
 - ▶ PDG = ± 13
- Neutron passing through top sheet
 - ▶ z > 5499
 - ▶ PDG = 2112
 - ► TID \neq lastTID
 - ▶ $PID \neq lastTID$
 - Same effect as "killing" neutron track at rock/cavern boundary
 - $EID = lastEID \rightarrow increment multiplicity$
- Simulation time $t = \frac{N}{AF_V}$
 - ► *N* is the total number of muons crossing top sheet
 - A is the area of the top sheet, 32x14.5 m²

K.Ruddick, MINOS Internal Note, NuMI-L-210 (1996)

R.Nelson, B.S. Dissertation, University of California at Santa Barbara (2003)

Melinda Sweany (LLNL)

Muons Crossing into Cavern - 120 days

Melinda Sweany (LLNL)

Muon Vertical/Horizontal Flux

Melinda Sweany (LLNL)

Depth Working Group Meeting - June 28, 2012

6

Neutrons Crossing into Cavern - 120 days

Melinda Sweany (LLNL)

Neutron Flux Ratios

$$\begin{aligned} \mathcal{F}_V(\mathsf{T}) &= 7.401 \times 10^{-9} \mathrm{cm}^{-2} \mathrm{~s}^{-1} \\ \mathcal{F}_V(\mathsf{B}) &= 7.042 \times 10^{-9} \mathrm{cm}^{-2} \mathrm{~s}^{-1} \\ \mathcal{F}_H(\mathsf{W}) &= 6.658 \times 10^{-9} \mathrm{cm}^{-2} \mathrm{~s}^{-1} \\ \mathcal{F}_H(\mathsf{E}) &= 6.749 \times 10^{-9} \mathrm{cm}^{-2} \mathrm{~s}^{-1} \\ \mathcal{F}_H(\mathsf{N}) &= 6.6848 \times 10^{-9} \mathrm{cm}^{-2} \mathrm{~s}^{-1} \\ \mathcal{F}_H(\mathsf{S}) &= 6.506 \times 10^{-9} \mathrm{cm}^{-2} \mathrm{~s}^{-1} \\ \frac{\mathcal{F}_H}{\mathcal{F}_V} \sim 1 \end{aligned}$$

$$\frac{\mathcal{F}_H}{\mathcal{F}_V} = \frac{\alpha + 2}{4\sqrt{\pi}} \frac{\Gamma(\frac{\alpha}{2} + \frac{1}{2})}{\Gamma(\frac{\alpha}{2} + 2)}$$
$$\alpha = \mathbf{0} \to \frac{\mathcal{F}_H}{\mathcal{F}_V} = \frac{2}{3\pi} = \mathbf{0.5}$$

Melinda Sweany (LLNL)

Depth Working Group Meeting - June 28, 2012

- / - · 1 ·

Neutrons Flux as a Function of Energy

Wall	Total	>100 keV	$>1~{\sf MeV}$	$> 10 \ {\rm MeV}$	>100 MeV
Тор	7.401	2.179	2.179	1.603	0.7609
Bottom	7.042	2.516	1.935	0.6188	0.1107
East	6.749	3.105	2.559	1.173	0.4042
West	6.658	2.962	2.419	1.048	0.3473
North	6.684	2.962	2.415	1.056	0.3522
South	6.506	2.914	2.392	1.034	0.3418
Sum	41.04	16.64	13.90	6.533	2.317
Average	7.0	2.6	2.2	1.1	0.5
M&H	N/A	16.9	5.84	4.73	1.073

Depth Working Group Meeting - June 28, 2012

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?