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Flux Comparisons for Many Energies
and Materials
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Good global flux agreement
except for lead

Some discrepancy w/ heavier
elements

280 GeV . primaries
Lead (GEANT)
Iron (GEANT)

—— CaCO, (GEANT)

— Water (GEANT)

C,H,, Scint. (GEANT)

— Lead (FLUKA)

Iron (FLUKA)

— CaCO, (FLUKA)
T .. —— Water (FLUKA)

., —— C,H,, Scint. (FLUKA)

neutron integrated flux [u-! GeV™]

10*  10° 102 10" 1
neutron energy (GeV)

10°



Neutron Captures
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* Overall normalizations and shapes “track” well

* Discrepancies in numbers of captures

* Especially interesting is discrepancies in capture time, radius and multiplicity
distributions, this suggests slight differences in microphysics of transport —

which could be important for shielding simulations of all types, not just
cosmogenics
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Neutron Yield Potted Traditionally
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The scintillator material is
compared on the traditional plot
The discrepancies in total neutron
capture yield are apparent

Need more points and/or to run
with muon energy distributions to
compare to typical plots for yields
at particular depths (which is
parameterized by average muon
energy)

Sometimes people claim that the
yield should only depend on
average muon energy but | am
skeptical about this, and think it
might be an accident for the Gran
Sasso depth — we’re checking this
claim



Greenstone for CDMS Cosmogenics
Paper
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Using Geant4.9.5 better agreement
than originally obtained by Dennis
Wright, running both codes

Producing the multiplicity distributions
for this paper too



Next Steps

Working on isotope production rate comparisons
for various isotopes, especially 1C to give
another handle on simulations

Splitting up the simulations into specific
processes like Wang et. al. (2001) did

Running the simulation for muon energy
distributions

See the LRT 2013 proceedings for more detail:
https://zzz.physics.umn.edu/lowrad/flukageant/
Irtproceedings



