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OUTLINE

• Fast neutrons as backgrounds for underground science

•Detection of fast neutrons with plastic scintillator and helium 
proportional counters

• The UMD/NIST Fast Neutrons Spectrometers (FaNS)

• FaNS-1: Measure in-situ

• FaNS-2: Measure and simulate
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Fast Neutron Backgrounds for 
Underground Science

• Fast neutrons play a particularly problematic role in low 
background experiments

•Deeply penetrating

• Create long lived isotopes (Ge77, Xe137)

• FNs are indistinguishable from WIMP dark matter 
interactions

•WIMP searches, Double Beta Decay, and others suffer
3
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NEUTRON PRODUCTION 
Simulation vs Data
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Finally, it is apparent that the experimental points
lie far above the MC data. If the disagreement for
the light materials is already unreasonable, the
case of lead cannot be easily explained. In fact,
even if a much lower neutron threshold of 1MeV
is considered, both MC models would still predict
a lower cross-section than those reported in
Ref. [18].

The production of lower energy neutrons by
deep inelastic scattering (DIS) of 470GeV muons
in lead was studied by the E665 Collaboration,
who found average neutron multiplicities per DIS
event of ’ 5 for neutron energies under 10 MeV
[19]. A value of 3.7 is obtained for the GEANT4
simulation of the m–N process at this muon energy,
in reasonable agreement with the experimental
result. The simulated neutron spectrum (per unit
energy) exhibits a double-exponential behaviour
below 10MeV—also in agreement with the experi-
mental findings. The two decay constants, due to
neutron evaporation from the thermalised nucleus
and from pre-equilibrium emission, are charac-

terised by nuclear temperatures of 0.93 and
3.7MeV, compared to 0:7! 0:05 and 5! 1MeV
obtained in E665. In conclusion, the spallation of
neutrons under 10MeV as predicted by GEANT4
for lead does not conflict with these experimental
data.
The role of the minimum energy transfer in the

muon photonuclear models in neutron production
was pointed out in Paper 2. This threshold comes
about because the virtuality of the photon can no
longer be neglected when it becomes comparable
to its energy. Recently, the total m–N cross-section
was reported to increase by 2–3 times if the
minimum energy transfer is decreased from 140 to
10MeV, based on the parameterisation used in
FLUKA [20]. We have confirmed that this
difference is only 10–15% greater for the
200MeV threshold in GEANT4. The aforemen-
tioned study also found that the parameterisation
used to describe the g–N cross-section in FLUKA
[16] (similar to that from Ref. [17] used in
GEANT4) overestimates more rigorous theoreti-
cal calculations when extrapolated to low energy
gammas. Consequently, the increase in the muon
cross-section with decreasing threshold is not
expected to be as large as mentioned above. In
any case, as pointed out in Paper 2, we expect
many more neutrons to be produced by brems-
strahlung (real) photons with low energies in
electromagnetic cascades than by virtual ones in
muon interactions with small energy transfers.

3. Underground neutron fluxes: a case study

The UK Dark Matter Collaboration (UKDMC)
has been assessing the feasibility of a xenon-based
tonne-scale dark matter experiment to be installed
at the Boulby Underground Laboratory. In this
context, initial calculations using FLUKA, re-
ported in Paper 3, have so far been performed of
the muon-induced background in a 250 kg xenon
target. Building on that work we present here a
case-study comparison between FLUKA and
GEANT4. The calculated neutron fluxes and
spectra at the rock/cavern boundary and after
various shields are also relevant to other under-
ground experiments in different laboratories.
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Fig. 7. Differential cross-section of neutron production by
190GeV muons for a 10 MeV threshold in neutron energy. The
data points represent the results of the NA55 experiment. The
thin-line histogram shows the GEANT4 simulation considering
muon–nucleus interaction only; the thick histogram includes all
physics processes. The dashed line represents the FLUKA
results for the latter case.
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UMD NIST FAST NEUTRON 
SPECTROMETERS
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THE FaNS DETECTORS
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• Arrays of plastic scintillator and helium-3 proportional counters

• Risetime of helium tubes gives a powerful handle on rejecting alpha 
backgrounds in detectors

• Use Capture-gated Spectroscopy for particle identification and energy 
information

• Calibrated at NIST with Cf, DD, and DT neutrons

• Measure the surface and underground neutron spectra

• FaNS-1: operated at Kimballton Underground Research Facility

• FaNS-2: to be operated at shallow location at NIST
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Analysis items:
1. Scintillator energy
2. He3 energy
3. He3 risetime
4. Time Separation
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TIMING SEPARATION
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FaNS-1 SUMMARY

13

•Calibrated at NIST
•Measured the surface spectrum 

to ~150 MeV
•Operated for 2 years at KURF
•Measured the fission neutron 

spectrum and flux at KURF
•To be submitted to PRC
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FaNS-1SURFACE NEUTRONS
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FaNS-1 AT KURF - 1450mwe
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FaNS-2
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FaNS-2



19 Plastic Scintillator
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TIMING SPECTRUM
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DD NEUTRON GENERATOR
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-- No Cuts
-- Real + Random
-- Random Only
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NEUTRON CALIBRATION
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•DT Generator data to come soon
•Will measure the absolute efficiency with 

calibrated Cf source
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COSMOGENIC NEUTRONS AT NIST
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COSMOGENIC NEUTRONS AT NIST
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FaNS-2 OUTLOOK

26

• Absolute calibration up to 10 MeV with 252Cf

•Measure response to 14 MeV neutrons from DT generator

• Finish measurement of ambient neutron spectrum from 500 
keV to > 1GeV

• Install detector in a shallow underground lab to measure 
muon induced neutrons

• Simulate the neutron spectrum using Fluka/Geant4/other
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DATA ACQUISITION 
REQUIREMENTS

• Synchronous sampling and triggering of 56 channels

• Operate in three trigger modes:

• Gamma calibration:  Any PMT triggers all PMTs

• Muon calibration: Trigger on high multiplicity PMT events

• Neutron data: Any helium signal triggers all channels

• ~1ms long traces with ZLE to reduce data size

• Large dynamic range (30 keV:200 MeV per channel)

• Need to automatically switch between different modes
28
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DATA ACQUISITION
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PMT SIGNAL CONDITIONING
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PMT SIGNAL CONDITIONING
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NIST nTOF APPARATUS
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TIME OF FLIGHT ENERGY
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MeV vs MeVee
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