AARM Collaboration Meeting Minutes

FRIDAY 3/19/10

time	Comments/discussion during and after talk
0900	Introductory remarks from Kevin Lesko
0904	Introductions etc.
0908	Prisca Cushman - Presentation of AARM Goals
	-Is the design for FAARM separate from exp halls? We have to interface with them,
	experiment hall is one area.
0922	Steve Marks - DUSEL S4 schedule
	-in response to question: most/all halls will be outfitted for cryo, and appropriate
	ventilation systems.
	-construction may start at 7400L sooner than 4850L because of limited rehab needs in
	comparison. (all construction schedules in talk are optimistic in terms of funding, etc.)
	-Ross will support construction activities, Yates will be science.
	-plans on 800L for storage/CUBED? Not currently. Possible locations elsewhere,
	footprint document for available areas is out there somewhere.
	-stub for short module, its cross section? Not sure, but on the order of 5-6m wide and
	similar height, essentially same size of drift.
	-FAARM would fit in lab module 2. There might be other locations that may make more
	sense later.
	-transition from less clean to cleaner in foot print? Complicated question, no definite
	answer yet, considered having an entire lab module as a clean space, there will certainly
	be clean transitions into a clean room. It won't be a huge improvement over Gran Sasso.
	Issues now include the low-radon air, which may require dedicated ducts from surface,
	which increase costs a lot due to extra excavation and stuff So, not really an answer
	yet.
	-couldn't some of these industrial things could be done at a shallower depth at the 1250L,
	or storage which at the 1250L which may be sufficient since the stuff came from the
	surface anyhow? Things like crystal growing, machining, and stuff like that might just as
	well be done at the 1250L to conserve space. This sort of thing would involve excavation
	costs involved in refurbishing some of these areas for utilities and stuff.
	-part of the 800L may be open
	-at one point there was a discussion of putting more hazardous activities at the 800L, and
	again it came down to costs—it seemed it may be better to have one campus. Even 300L
	was looked at once because you can drive to it, but that came down to costs again as well
	because of excavation.
	-have you considered requirements of various exps? Yes, we've done a first round asking
	for requirements from experiments. We have also been suggested that groups start
	gathering requirements for screening and stuff like that.
0958	Lee Petersen – Engineering requirements, conceptual plans, discussion
	-comment-egress has already been folded into the 17m space limitation
	-deeper pool in cavern- cost to DUSEL or AARM- Steve : first is it allowed, then who
	would pay for it. For one it would be preferred to use same contractor for excavation. If it
	were allowed, and necessary, they would probably require the exp to fund that. This has
	to do with customizing space for exps that may not be permanent. But a FAARM would

	be ideally a permanent facility, so that may or may not be an issue. Take off back rather
	than floor? Well, ideally they'd prefer to do neither and fit in the space allotted.
	-assumption now is that transition space is needed.
	-plugs/doors-detaching plumbing and utilities whatever could be an issue when accessing
	water shield. Flexible plumbing, that would unravel/coil would be a good solution for
	that.
	-rhvolite is sprinkled across the whole area, the geology in the slides isn't necessarily up
	to date.
	-if there were a water leak, the floor is graded such that it would go towards the other
	experiments. The entire hall would likely have more cryo, water in it and everyone may
	have to plan on having any critical electrical a set amount of distance off of the floor in
	the case of a leak.
	-ground flow from mine? There would be a sump anyways likely. Amount of inflow in
	that area is in the cups per day range.
	-why is machine shop included? Wanted a place in the clean environment to make repairs
	or assemblies, idea would be just a small one for simple stuff. It may seem excessive to
	have every exp do their own machine shop.
	-function of elevator-people and potentially things too, this has the potential to mess up
	the clean room, needs to be reconsidered. Are there requirements for elevator in terms of
	safety or accessibility? Certainly in terms of safety it's not a requirement (fires, etc.) but
	in terms of accessibility that's unknown.
	-does the top of the water tank need to be accessible? Yes, for cabling/maintenance and
	that sort of thing. Perhaps some of this could be a space, not a clean space.
	-amount of shielding inside detector? Will be determined by sensitivity of detector, etc.
	You won't need a large lead castle for each one.
	-class of clean room? Backed off of defining a class, mostly concerned with air
	exchanges, want a generally clean space.
	-is there a benefit to staying below the bridge crane? If you're on one end of the module,
	you don't necessarily need service from the bridge crane (except perhaps for
	construction). the crane could service the other exps on the other part of the module.
	-can some mechanical be left in drift? General electrical mechanical for the space would
	be out there, but there could be space for some other stuff.
	-could part of the egress serve as an emergency exit.
	-why water instead of copper or something? Cost (for one). Other advantages are rigging
	it as an active shield with pmt's to actually measure neutrons as a veto or an underground
	neutron monitoring system.
	-discussion on neutron threat, need for water shield.
	-still issues with design for fitting prescribed space, material handling, etc.
	-three areas of construction: civil-architectural, infrastructural, experimental
1058	Coffee
1114	Chao Zhang – External Background: gamma, neutron, muon
	-gamma ray flux is location dependent.
1150	Keenan Thomas – Radon Measurements
	-ventilation likely to change quite a bit- new air doors, upgrades to fan, etc.
1221	Dongming Mei – Sanford Lab and future plans
	-gamma ray screener costs- ~\$1.36M (estimates in slides for individual HPGe dectors

	may be low). Estimates may be out-of-date.
10.10	-may need electrotormed copper for shielding to reach desired sensitivities
1243	Lunch
1322	Discussion on counted materials databases
	What's going on in Europe for what everybody screens? There was an initiative to build a
	database(its managed by Pia), the idea was to get as much info as they can. It's materials
	oriented, has information of gamma spectra and things like that. It works as a guide for
	selecting construction materials, although they are generally screened again when actually
	building somehing. Pia thinks it would be a good thing to compile data together
	somewhere. Link below. The database is publicly accessible online, associated with the
	ILIAS. There are some concerns about putting results from the testing of trademarked
	materials online. For now, they are including information such as manufacturer. There are
	concerns whether a company would be uncomfortable having "bad press" online, and
	whether they could have the power/rights to request that it is taken offline. Perhaps that is
	something to worry about only if/when a problem arises.
	http://radiopurity.in2p3.fr/
	Al Smith-He's had experiences with another aspect, where different experimental groups
	are willing to share their testing results with others.
	Cushman- FAARM may need to develop a <u>testing policy</u> , for instance, that the
	information from any testing done at the facility would be publicly shared to everyone.
1337	Tullis Onstott – Bio and Geo needs
	-The measurement device would benefit from a clean, low-bkd environment such as the
	FAARM.
	- The radiopurity of the water used isn't very important, since it is only used for transport.
	- The goal isn't to disturb the environment, to use a low level, injected tracer to detect the
	consumption of organisms.
	- The induced activities wanting to be measured are in the nC1-pC1 range.
	-Expected as they go deeper they if get away from the cosmogenic contaminants in the
	Could these radio higherical complex contaminate the law levels in the counting facility?
	-Could these radio-biological samples collected. How much for instance, of C 14 be
	contained in a micro gram of PNA
	What are some of the needs for geology applications? Who's the best person to contact?
	How much are we a user facility in general? Only the physics community or do we
	market ourselves to other applications? Other samples being brought in might have the
	notential to be very interesting and perhaps would never have been thought of for testing
	from the physics perspective
	-FAARM activity overtime is likely to fluctuate depending on scheduling of experimens
	but it is unlikely it will last much longer than 10 years.
1416	Dongming Mei – Shield Thickness
	-simulation for SSteel is a 'skin' i.e. no inner supports, not modular design, etc. so it
	would be a lower limit for backgrounds.
	-rhyolite could change the effectiveness of the shielding.
	-in the model, most of the SS gamma contribution was from the inner surface/skin. Could
	this inner surface be made of something else? Aquarium companies have experience with
	load-bearing acrylic

ſ

	-YDC- if one doesn't want to instrument the shield, does one need to worry as much
	about purifying the water? Will these supporting and purfication systems for the water
	affect cost adversely, as opposed to copper or something?
	-Richard Ford- if you're thinking acrylic, perhaps you could have a manufacturer make a
	test batch by distilling the monomer for evaluation.
	-Acrylic was kind of just chosen for convenience. Are there any other materials that could
	be considered? Could a high-purity polyethylene be found? Structurally, polyethylene
	isn't as good as acrylic. Poly-carbonate? Other materials may make thinner walls possible
	(compared to the thickness needed for acrylic).
	-High-density poly-ethylene is a trade-off, because it has less H.
	-Acrylic from SNO 10 ⁻¹ ppt.
	-Sometimes the contamination just depends on the cleanliness of the place that made it.
	Maybe something that is also used as a medical-grade material may be made in a cleaner
	environment.
	-SNOLAB is making a burning facility for measuring more acrylic, by neutron activation.
1442	Vitaly Kudryavtsev – Eureca water shield simulations
	-FAARM- instrument for muon veto, or make passive and put a separate system on top?
	-cost of phototubes per tank: 50.
1518	Pia Loaiza – Background Studies for Eureka
	-plans about cosmogenic activation? plan to buy materials, copper, and store
	underground.
	-Are companies able to ship Cu quickly, to store underground? Arrangments are being
	made to get fresh batches of copper to put underground right away.
	-Problem with first design was essentially the Co60 in the steel. (the source of Co60 is
	from the production of it, it gets in the steel from Co60 in the crucibles) Some companies
	will salvage shipwrecks for low activity steel, but its unknown how much stainless steel
	older ships would have, versus regular steel.
	-Ti is being used by LUX. (better for cobalt 60 contamination, but worse for others)
1546	Bob Altes – Water shield engineering issues
	-talk serves as a good starting point for some issues.
	-question on hot cell water shield Bob previously made, the tanks were filled with
	potassium bichromate to keep the rust down
1607	Lee Petersen – (Water Shield) Baseline concept and approximate costs
1637	Steve Marks – LBNE Water System
	-large capacity, may make sense to have a shared fill system with other experiments
	-not sure exactly what was meant by the 'optional' uranium content on one of the first
	slides
1648	Lee Petersen – LUX Water Purification System
	-fairly small footprint, in the Davis Cavern, but it also has a fairly slow flow rate, 7gpm
	-potential for radon transmission, so will be in an airtight room covered with Tekflex
	(Mineguard-ish product), which is resistant to radon diffusion
	-it fills and continuously recirculates into a buffer tank (not water shield), with a total cost
1.5=	of \$118K (not including some consulting, some operating costs)
1657	Richard Ford – CTF at Gran Sasso (overview of hardware)
	-cost estimates from >10yrs ago
1714	Lee Petersen – LUX Water Tank

	-quotes have been solicited for the FAARM tank
	-they have a hoist/rail for loading detector assembly
1726	Kara Keeter- Ultra-Sensitive Immersion Tank
	-pmt estimate in posted slides may be low, from discussion. Low activity phototubes are
	generally smaller in diameter for an order of magnitude of lower contamination in the
	window.
	-electronics? Need a DAQ system that can link together, reconstruct coincidences, etc.
	-Borexino DAO: home grown setup- a few flash ADC channels, basic system has ADC
	converter similar to SNO.
	-Need to decide, what to measure with this? The ls gamma resolution is poor.
	-Times may have changed, this may not be necessary.
1745	Discussion
17.10	-What sensitivity will clients/users desire? Sub ppt levels would be a good target
	-Build something similar to GERDA?
	-It might be possible to find something of value with very large pure Nal Internal
	contamination may not show neaks just a bkd continuum. Well style?
	-should part of the water shield buldge out to house a newly-designed screener detector?
	Perhans it would nurify the shield water a stage further
	-Maybe just design and propose this low-background room, reserve space for a next
	generation screener to be put in later
	Δ dedicated R&D space has its merits too (not like a workbench more like a space for
	testing fully assembled/developed detectors)
	-Electronics I N feeds etc. would be outside the tank
	-Haven't contacted Homeland Security about what types of sample requirements they
	would be interested in
	Perhans a custom advanced detector would be valued to create a state of the art facility
	Perhaps a custom, advanced detector would be varied to create a state of the art racinty.
	custom designed screeper or something to optimize sample flow (samples tested per
	month) would be valuable for service
	-Only one or two detectors at Gran Sasso can measure down to a few ppt levels (after
	measuring a few kg of conner for two months) Need to consider present and future
	requirements
	Richard mention a mini Borevino type detector that can get down to U.Th. 0.01 ppt
	Perhans a detector of this nature may be nice for very low activities looking for just raw
	counts above background (*talk Richard found discussing this added to archive of
	meeting talks)
	-Samples would have to be in contact with the liquid scintillator in the immersion
	detector to get down to the fraction of a ppt?
	-Raise threshold to avoid Pb-210 problem?
	We still could make the case that this immersion is useful, and cost it. It would perhaps
	be a useful thing to build if it performed as advertised. Would this be useful for any
	specific component of an experiment?
	-Maybe cost this immersion and also a multiple element Ge detector array made with
	high purity materials. A Ge array would expensive but a I S would need an expensive
	number of the same cost of the parts atc). For the same cost
	you could buy a few germanium detectors
	you could buy a few germanium detectors.

0903	Pia Loalza – Laboratoire Souterrain de Modane
	-4800 meter deep lab
	-3500 m3
	-muon flux
	-neutron flux
	-primordial Radionuclides
	-radon concentration, chimney directly out of facility for circulating fresh air
	-radon trapping facility
	-can radon reduction facility be scaled down? In 5 years have not changed consumables.
	Fresh air treatment not the same. Initial investment very expensive.
	-How far is the distance to the detector from the radon reduction facility? 10meters
	-transport through pipe not the reason for rising radon but off gassing of Nemo materials
	-copper or lead shielding
	-Envirionmental studies of lake sediments
	-vearly renters for screeners, what is the sensitivity of the screener?
	-description of Detectors
	-newest, suited for <600 keV, good resolution at low energies, electrical cooking, more
	expensive in beginning, only good for small mass detector. Power restriction, gets to 77K.
	archeological lead story, 15 tons donation, low lead 210 but can it been used for
	experiments? Uranium of at ppt levels?
	-gamma screener costs from 100kEuro (newest planner screener) to 200kEuro (on order)
	-shielding, 200-250Euros/kg (roman lead 400A.D.) Low activity lead: about 2 Euro/kg
	-lead casting 20kEuros
	-hardware
	Fureka: needs 20 micro Ba
	Super Nemo:
	Need long time runs: 2-3 months
	Gran Sassa as done this level of sensitivity
	Gran Sassa as done this level of sensitivity
	Donoming Mei Screeners and Shieldingwith pricing
	-costing with and without water shielded room
	-need neutron shielding
1000	-use ultranure water instead of ultranure lead
1000	-are there measurements for the material holding the holding?
	maybe cheaper, but circulation and maintenance more expensive
	-what is real contribution of neutrons?
	approximate \$10 million
	-approximate \$10 minion
	Richard Schnee BeteCage
	-confident to finish in 15 months
	-confident to finish in 15 months
1030	-just outri tow-radon cleantoon at syracuse, auminum construction with overpressure to
	exhaust allows Radon to back contaminate
	-called anows reduced to be a consistent land to desistent in building law rader
	send the cost estimates and comparisons that lead to decisions in building low-radon
	cleanroom to wiki.

	-layout for Alpha-Beta Screeners
	-Noryl, dark colors are worse for radioactivity
	-reference to Pia's database as good source for radiopurity
1100	
1100	
	Jodi Cooley XIA Alpha
	-IBM demonstrated sensitivity of 0.0006 alpha/HR-cm2
	-next interation has software improvements, water sensors
	-timeline, currently bottom half being built
	-current cost at $55K + 20\%$ contingency per detector
	-need to discern mid air events
	-argon cost 10K/year
	-need to purge outside with "old air"
	-need to circulate air around outer chamber
	-operates just as well on the surface
	-developing travelling detector
	-may add on veto around detector
1130	
1150	Eric Hoppe Electroforming Facility
	-submicro Bq/kg is now possible
	-goal: nignest purity copper in the world to be produced
	-underground, copper never sees light of day, avoiding cosmogenic formation of bocobalt
	-move in summer 10
	-ou Ross Shop area in Homestake placement for electroforming facility, temporary
	Majorana Electroforming bath grow copper on ss surface of mandrel
	etch surface to remove surface contamination, convinced that surface contamination in
	main problem
	-Davis campus is delayed maybe fall'10
	-several experiments require significant amounts of copper for cryostats and inner shield
	-what is total weight. 100kg/bath/year, each bath \$50K.
	-can't be rolled, hardened with slow growth and electro shock to withstand vacuum.
	Flattened and milled to thickness
	Discussion: how many baths does FAARM need? Up to 23 baths in two locations could
	be available if 1 ton Majorana not funded. 2-4 people.
	-Mass Spectrometry tools to consider: ICP-MS for sensitivity and versatility, need to get
	to 0.6micro Bq 232Th/kg cu
	-radiopurity of acids from manufacture further distilled
	-background still drives preparations
	-mass spec in class 100 cleanroom and commercially available
	-use microwave digestion, can digest plastics.
	-Cost \$200-250K more to support instrument than purchase
	-Do we need this kind of instrument under ground? Cobalt-60 rejects well.
	-local facility needed and need to train people
	-May not have to be underground or even on site, but training of technique needed and

	need to cost for supplement to March 31 figures. -who else is doing ICP-MS at this level? Don't know. If someone has the facility, this machine is commercially available. -subcontracting if specs followed? Very expensive and facility needs to be dedicated to this level of detection. Think about synergy aspects of what fields other than physics may need this level of screening and foster cooperation. -Other tools, SEM, Optical Microscopy -need integrated approach to these devices -laser oblation discussed
1210	 Henning Back Neutron Activation Analysis Pulstar reactor education reactor technique of irradiating of samples, aluminum stringer is constraint Exo has name of one guy making this plastic TE-6472 human factor slows early counting How to include neutron activations? Any reason to put parts of this underground? If screeners at surface, why take underground? U and Th no reason underground. Once irradiated, no cosmological effects.
1245	 Priscilla Cushman Once more into the Breech Discussion: What's missing? Radon Emanation Chambers Neutron and gamma shielding, activate shield as neutron detector? Neutron and gamma monitoring system at different location outside the shield. Can we improve supply of ancient lead, do we need to start obtaining now, is there a scarcity issue? Get lead under ground fast. Need estimated quantity of lead to start searching. Is there space to begin stock piling supplies if procured. Lots of space. Think about a possible substitution for water,polycarbon, pellet system, spraying, need thickness. Collaboration with other labs, need web based interfaced, time-table, needs. Web based interface needs to already exist. Create working groups to include larger collaboration
1305	Yuen Dat Conclusions Review agenda, staging options, scaling options, geometry of detectors, initial scanners need to be shielded,