NAA at NC State

H. O. Back – Physics S. Lassell – Nuclear Engineering

NAA principle for U and Th

- Transmute long lived isotope into a short lived radioactive isotope through neutron activation
- Search for new isotope decay by identifying signature gammas through gamma ray spectroscopy
- Example:

packpromise

 232 Th(t_{1/2}=1.4×10¹⁰) + n \rightarrow 233 Th(t_{1/2}=22m)

17% prob. 312keV

→ e^{-} + ²³³Pa(t_{1/2}=27d) → e^{-} + ²³³U(t_{1/2}=1.6E5y) + γ

packpromise

NAA

• Activate sample with high flux of neutrons and search for signature gammas to identify contaminant

Element	Parent Isotope	Product Isotope and Decay chain	Gamma energy (keV)	Sensitivity
К	⁴¹ K	⁴² K (t _{1/2} =12.26 hr)	1524	Best limit 50 ppb Typical 50 ppb
U	238	²³⁹ U ($t_{1/2} = 24 \text{ min}$) \rightarrow ²³⁹ Np ($t_{1/2} = 2.35d$)	106, 222, 228, 277	Best limit 1ppt Typical 20 ppt
Th	²³² Th	²³³ Th ($t_{1/2} = 22 \text{ min}$) \rightarrow ²³⁹ Pa ($t_{1/2} = 27d$)	312	Best limit 1 ppt Typical 20 ppt

NAA data taken from P.IIa talk at LRT2004, Sudbury Canada, Dec 12-13, 2004

Pulstar reactor

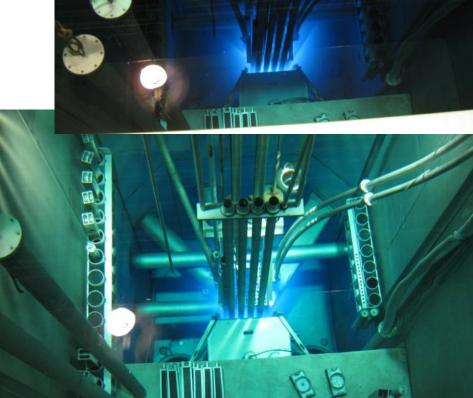
(http://www.ne.ncsu.edu/NRP/reactor_program.html)

- Educational reactor
- Provides services for basic research
- 1 MW pool type reactor
- 4% enriched uranium dioxide fuel
- Thermal n-flux in 'Rotating Exposure Ports' = 4-8 x 10¹² NV at 1 MW

NAA method at NC State

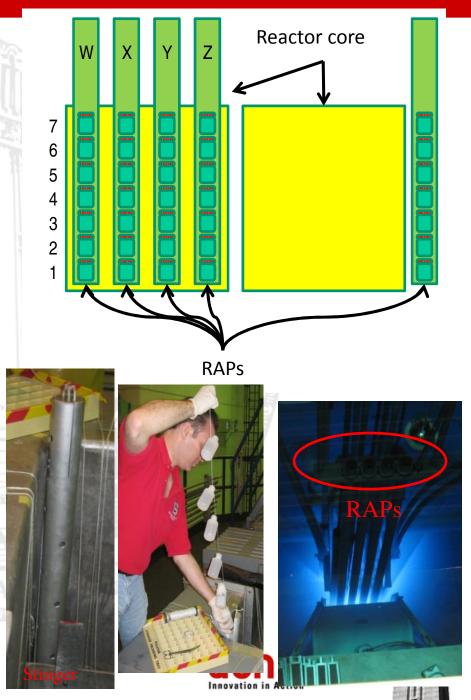
- Samples
 - Sealed in plastic vials
 - Vials are LDPE (tends to be cleaner)
- Standards
 - Aqueous solution sealed in plastic vials (vials are HDPE, which holds up better to irradiation)
 - Known amount of U and Th
 - Irradiated along with samples
 - Similar geometry as sample
- Flux monitor
 - Antimony solution sealed in plastic vials
 - Irradiated along with samples
 - Used to monitor n-flux if necessary
- All vials are packed and sealed in irradiation bottles (nalgene bottle)
 packpromise

Sample and Standard prep


- Sample
 - Plastic = TE-6472
 - Identified by EXO collaboration
 - Used for MAJORANA crystal mounting
 - Machined at NC State to fill vial radially and 2/3 of the vial height
 - Mass 38.8g
 - Plastic and vials etched and cleaned by Eric Hoppe –PNNL
 - Vial heat sealed at NC State
- Standard
 - U and Th in 2% HNO₃ aqueous solution
 - Height of standard liquid equals height of sample to match geometries
 - Starts as 1000mg/L, but further diluted to give required mass with correct geometry
 - Total U mass = 50µg
 - Total Th mass = 2.5 µg

packpromise

Reactor pictures



Innovation in Action

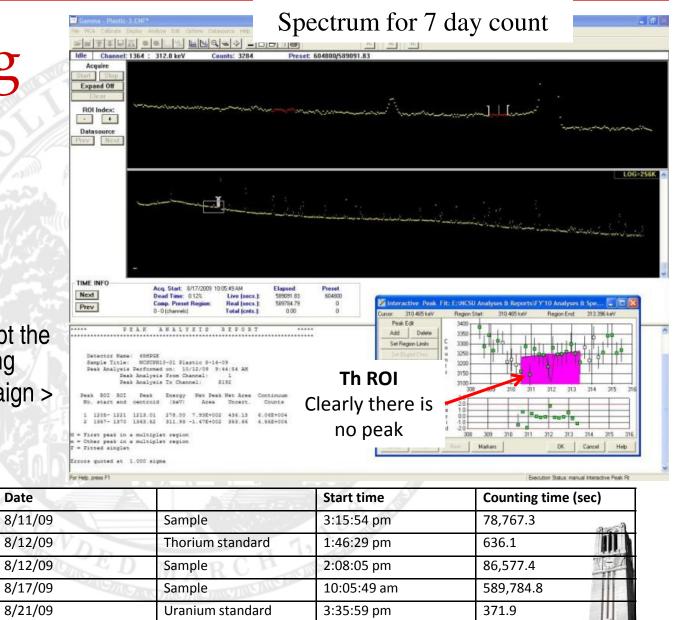
Irradiation

- Rotating Exposure Ports (RAPs)
 - Thermal n-flux in RAPs = $4-8 \times 10^{12}$ NV at 1 MW (the flux varies by position)
 - Four RAPs each hold 7 irradiation bottles
 - Irradiation bottles suspended in aluminum stringers
 - Stringers must 'cool' in reactor pool for 4+ days before irradiation bottles can be removed
 - Eliminates ⁴⁰K determination (⁴²K t_{1/2} ~12hrs)
 - Reduces 238 U determination efficiency (239 Np t_{1/2} = 2.35d)
- Our sample irradiation
 - Irradiation positions
 - Sample 2Y (highest flux region)
 - U standard 1Y
 - Th standard 3Y
 - 18 MW hours

packpromise

Post irradiation sample prep

- Samples removed from irradiated vials
- Sonicated in dilute HNO₃ solution for 1 hour
- Rinsed with DI H₂O in ultrasonic bath for 1 hour
- Sampled placed in new, nonirradiated plastic vials to maintain geometry


Counting

- Detector
 - 65% HPGe
 - 8" Pb shield
 - 2" poly shield
- Counting
 - All four vials counted together
 - Geometry of vials kept the same in each counting
 - Total counting campaign > — 10 days

Date

packpromise

►NC STATE

Innovation in Action

Results

- Analysis
 - Standards give expected gamma rate for given U and Th mass
 - Matching counting geometries cancel any geometrical systematic errors

Results

- $-^{232}$ Th ≤ 0.809x10⁻⁶ µg/g or 3.28 µBq/kg $-^{238}$ U ≤ 2.77x10⁻⁶ µg/g or 34.5µBq/kg
- Comparison Best EXO results for TE-6472
 - ²³²Th \leq 0.26x10⁻⁶ µg/g
 - ²³⁸U \leq 0.78x10⁻⁶ µg/g

Systematic study of trace radioactive. D. S. Leonard, et Al. 2008, Nuclear Instruments and Method A 591, pp. 490-509.

Summary

- NAA at NC State is a viable material assay method for DUSEL experiments
 - NC State Nuclear Engineering is very supportive (private conversation with director of reactor program)
 - Is done completely in-house at NC State (reliably)
 - Irradiation (others irradiate at other facilities)
 - Counting and analysis (Others send samples home and count in their own counters)
- The thorium limit is comparable to the best EXO measurement
- We would like to improve the Uranium limit
 - Higher mass? Probably not much help. We would like to do ~5 times better, but 5 times more mass is 200 grams. Might be possible, but it will take more R&D
 - Shorter cooling off period? Probably our best bet. The ²³⁹Np has a 2.4 day half-life. However, currently NC State uses aluminum stingers, which are very 'hot' when first removed. Requires more R&D.

NAA at NC State (conversation with S. Lassell in Nucl. Engineering)

- Currently 1200-2000 samples per year
- Large room for expansion
 - Room for more samples
 - Run reactor longer
- Sample size (3 different vials)
 - 0.13 ml dia. 0.22" X 0.44"
 - 1.4 ml dia. 0.38" X 0.87"
 - 8.06 ml dia. 0.57" X 2.09"
 - www.lacontainer.com
 - Vials supplied by NC State
- Typical irradiation 24 hr
- Neutron E and flux can be somewhat tailored
 - Further from core or shielding = lower flux & lower energy

- Detectors
 - 3 HPGe detector
 - Relative efficiency order 20-30%
 - One automated detector system for large number of samples
 - 1 low background HPGe detector with large shield
- Estimated costs for NC State physics
 - Irradiation \$100/hour
 - Analysis (typical including irradiation)
 - \$55 for one element
 - \$10-\$20 for second element
 - \$10/element after two
 - U and Th \$70/sample
- Sensitivity test underway (irradiation of polyethylene)
- More sensitive gamma at Kimballton (REF: P. Finnerty talk)

packpromise

Other facilities

- The University of Missouri-Columbia Research Reactor Center (MURR)
 - 10 MW research reactor
 - Offers NAA service and we can request quote online
 - http://www.murr.missouri.edu/
- Oak ridge High Flux Isotope Reactor (HFIR)
 - 85 MW reactor
 - Uses both plastic and graphite vials (graphite = longer irradiation)
 - Quote from website "The NAA systems support ORNL (DOE) programs, are used in work-for-others projects, and are available for use by students and faculty of universities through Oak Ridge Associated Universities and other programs." – NC State, Duke, and USC are part of the Oak Ridge Associate Universities
- MIT Nuclear Reactor Laboratory (NRL)
 - 5 MW reactor
 - 4 HPGe detectors
 - More info at http://web.mit.edu/nrl/www/research/neutron_activation.htm

