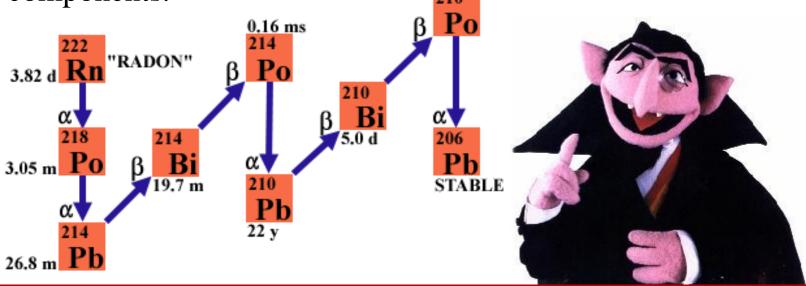


Radon Measurements at the Homestake Mine For Sanford Lab/DUSEL

Keenan Thomas

03.19.10 FAARM

University of South Dakota Dongming Mei, Keenan Thomas, Chao Zhang


Sanford Laboratory Jaret Heise

Black Hills State University Dan Durben

Lawrence Berkeley National Lab Rohit Salve

Radon Problems

- Immediate daughters of radon easily ionize and stick to surfaces of materials (plate-out) or attach to aerosols which then stick to surfaces (deposition).
- Immediate daughters are short lived, but introduce a prolonged source of background from ²¹⁰Pb.
- A possible source of background for sensitive experiments while running, during assembly, and even the counting of detector components.

Instruments

- Started (in earnest) in May 09
- Instruments on loan from various institutions and labs.
 0 2-3 Rad7's (USD,Brown, BNL)
 0 3 Alphaguards (LBNL)
- Advantages/Disadvantages for each type of detector.
- Concerns/Limitations underground: humidity, power availability, access

High Resolution Alpha Energy Spectrum

Surface Measurements

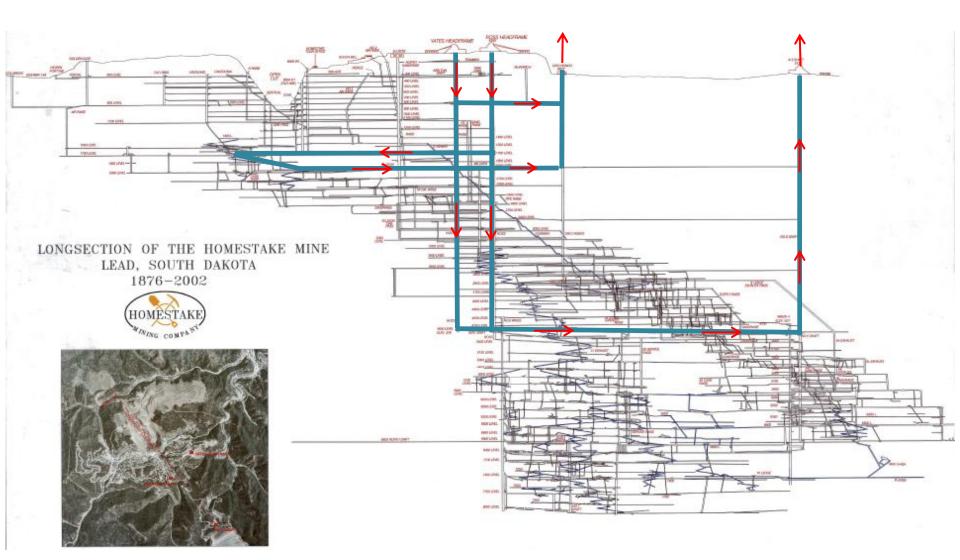
Outdoor 0.12±0.01pCi/L 4.44±0.37 Bq/m³

1.04±1.13 pCi/L 1 38.48±41.81 Bq/m³

Warehouse

2.62±.13 pCi/L 2 96.94±4.81 Bq/m³

3


4

2.22±1.51 pCi/L 82.14±55.87 Bq/m³

Leasting	Mean Rn Concentration					
Location	pCi/L			Bq/m ³		
Admin Bldg Conf. Rm, 2nd floor	0.30	+/-	0.81	11.10	+/-	29.97
Yates Headframe	0.28	+/-	0.03	10.36	+/-	1.11
Yates Headframe	0.25	+/-	0.03	9.36	+/-	1.11
Ross Headframe, crusher	0.20	+/-	0.02	7.51	+/-	0.74

10.2±2.78 pCi/L 377.4±102.86 Bq/m³ A few examples of the surface measurements, typical for what you would expect in surface structures.

Underground Measurements

Underground Measurements

Level	pCi/L	Bq/m ³		
Tramway	2.72	100.64		
300L	1.77	65.49		
800L	1.35 - 12.00	50.00 - 444.00		
1250L	1.78 - 25.35	66.00 - 938.00		
1400L	1.48 - 18.10	54.76 - 669.70		
2000L	17.70 - 30.70	655.00 - 1135.90		
4550L	9.07 - 25.40	335.59 - 939.80		
4850L	3.86 - 21.97	142.90 - 813.00		

 \rightarrow A general range of some of the average values encountered underground. (not necessarily max or min values, just a few example averages/ballpark values of some tests)

 \rightarrow Substantial variability attributed to the ventilation.

Historical Measurements

Date	level	WL	1 WL=100 pCi/L=3750 Bq/m^3		1 WL=200 pCi/L=7500 Bq/m^3		
			pCi/L	Bq/m^3	pCi/L	Bq/m^3	
7/22/1977	4850L	0.036	3.6	135	7.2	270	
7/22/1977	4850L	0.027	2.7	101.25	5.4	202.5	
9/28/1977	4850L	0.032	3.2	120	6.4	240	
9/28/1977	4850L	0.016	1.6	60	3.2	120	
7/14/1977	4850L	0.004	0.4	15	0.8	30	
7/15/1977	4850L	0.026	2.6	97.5	5.2	195	
7/19/1977	4850L	0.024	2.4	90	4.8	180	
9/25/1979	4850L	0.0052	0.52	19.5	1.04	39	

100% equilibrium

50% equilibrium

- Our measurements on the 4850L were much higher than what the historical records indicated.
- Rad7 indicated full equilibrium, even in very well ventilated areas.

Factors Affecting Radon

- Ventilation: surface air dilutes and exhausts radon laden air, this can reduce radon in some areas and increase in others.
- Local geology: grain size of rock, porosity, U/Th content and distribution, etc.
- Moisture: Water in pore spaces increases the effective radon emanation coefficient.
- Metal Oxides: weathering process on rock increases porosity of outer surfaces, sorbs Ra and other heavy metals to effectively enrich the oxide layer in Radon parents...

→Ventilation: present capacity reduced compared to past
→Levels below 4550L:

- -were/are a little "wet"
- -covered by a layer of Iron Oxide sludge/dust

Iron Oxide Sludge Sample

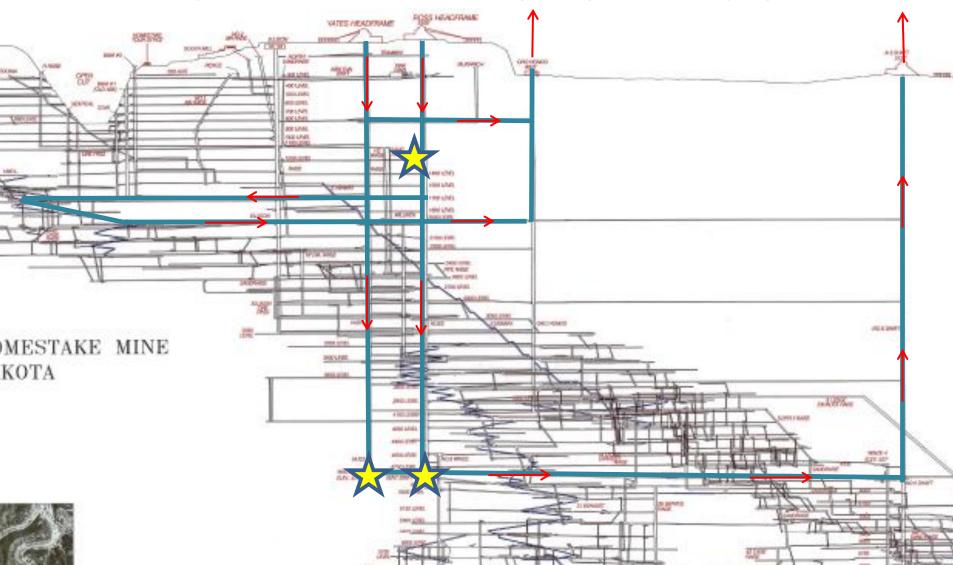
- Sample taken last week and sent to Al Smith for counting at LBNL.
- Both U series, Th series not in equilibrium; in particular due to absorption of Ra-228 and Ra-226.
- A smaller sample currently being counted indicates the emanation coefficient of the material may be quite high.

SDSTA Iron Oxide Sludge

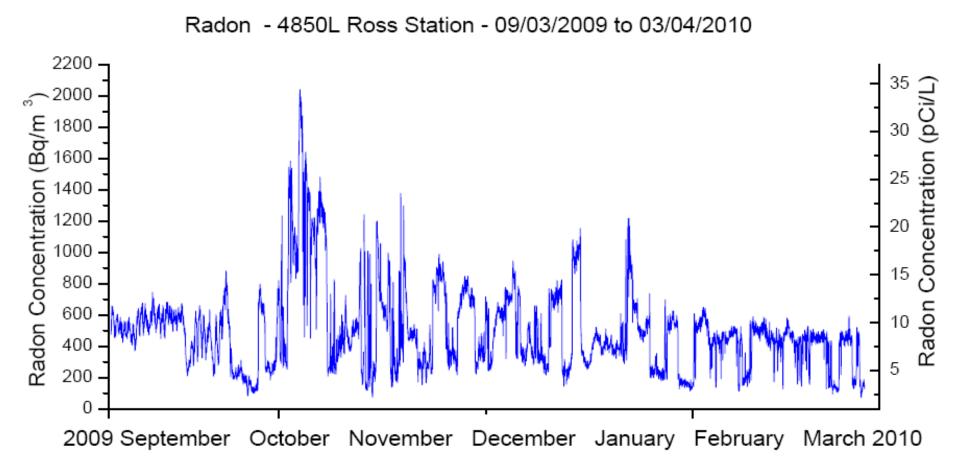
U(early)	0.68(5)	ppm
U(late)	5.6(1)	ppm
Th(early)	18.(1)	ppm
Th(late)	4.5(1)	ppm
К	0.034(1)	pct

Homestake Country Rock

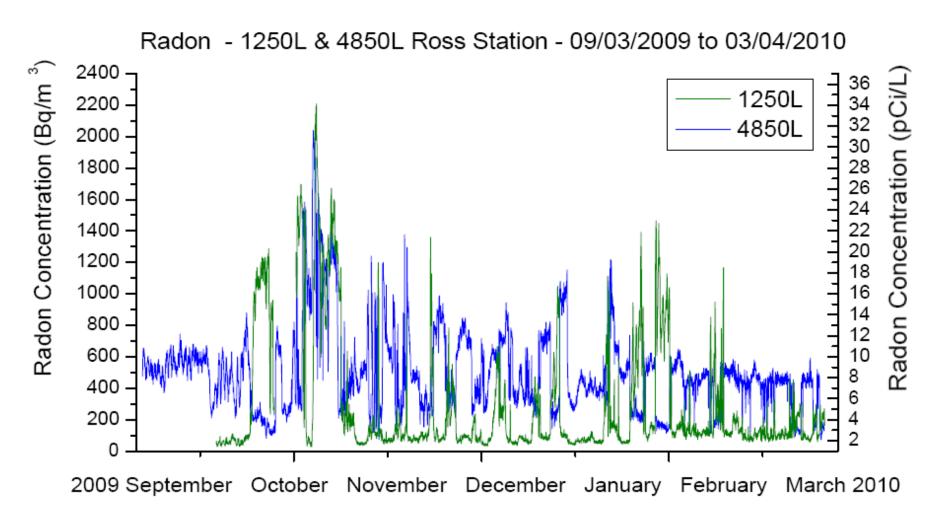
U	0.08-0.2	ppm
Th	0.2-0.3	ppm
К	0.1-0.15	pct


Homestake Rhyolite Intrusives

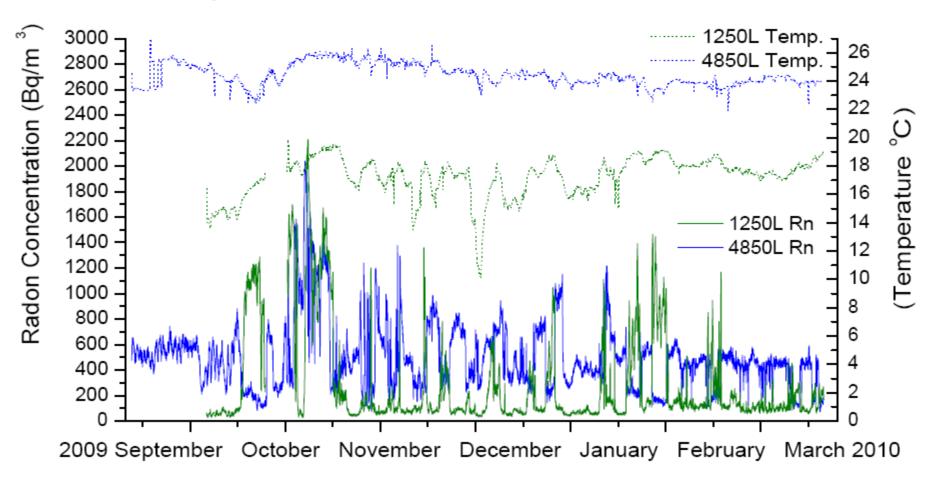
U	8-10	ppm
Th	8-12	ppm
К	2-4	pct


(representative values of Homestake samples counted by Al Smith at LBNL)

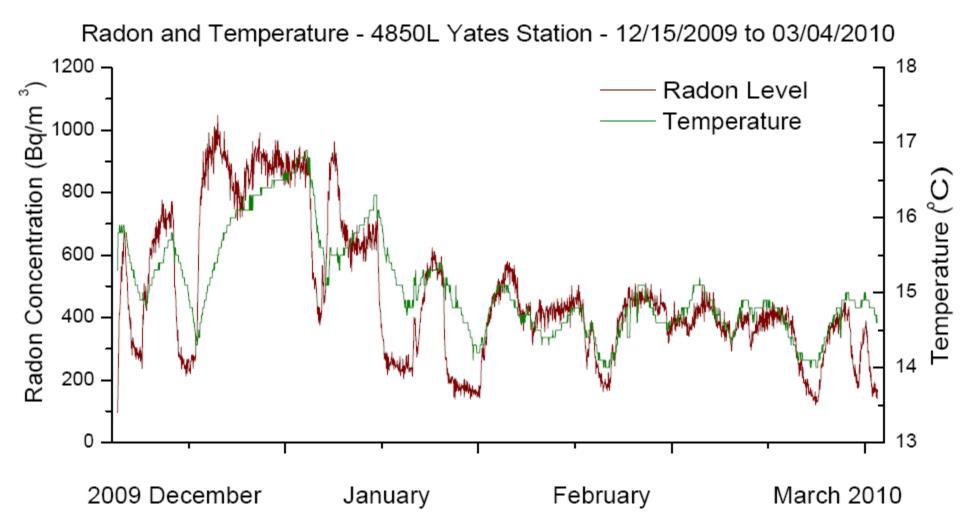
Mine Ventilation


Only 30-50% of Historical Capacity. (and very dynamic)

Long Term Monitoring

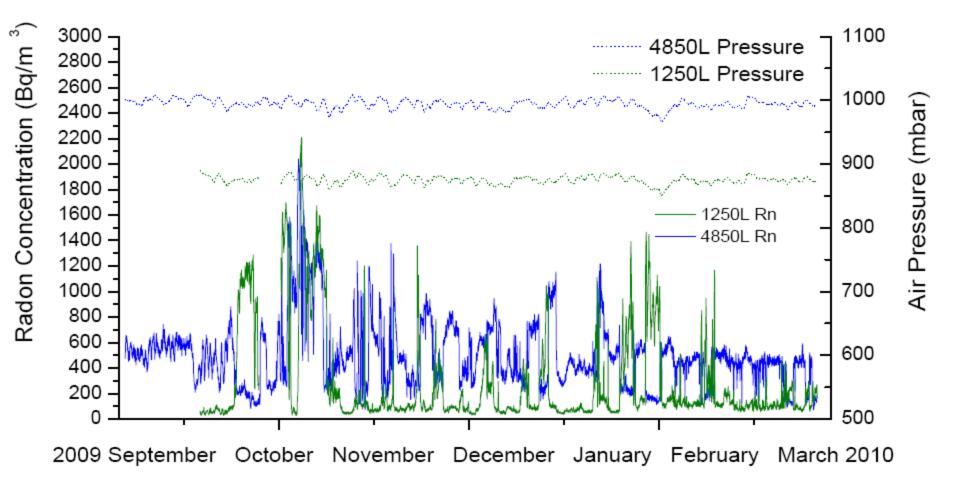

1250L vs 4850L

Comparisons of vertical locations on the Ross shaft reveal some ventilation events, such as air direction reversals.


Radon and Temperature

Radon and Temperature - 1250L & 4850L Ross Station - 09/03/2009 to 03/04/2010

Temperature changes can imply changes in how 'fresh' the air is entering the location.


Yates Station Rn vs. Temp.

The temperature relationship clearer at the 4850L Yates location is more evident, where the ventilation is less chaotic.

Air Pressure

Radon and Air Pressure - 1250L & 4850L Ross Station - 09/03/2009 to 03/04/2010

Pressure dependencies are unrelated to ventilation, radon– but show clear relationships to elevation and (presumably) the local weather.

Sanford Lab Underground Radon Concentration Using Genitron AlphaGuard detectors since September 3, 2009 2500 Yates Station 2000 4850L Rn Concentration 1500 =30 pCi/L Radon Concentration (Bq/m³) 1000 500 0 25 50 75 100 125 150 175 n 2500 Ross Station 1250L 2000 4850L Rn Concentration Ross Shaft 1500 =30 pCi/L Ventilation Reversal 1000 500 0 75 25 50 100 125 150 175 0 Day Number Sep 2009 Oct 2009 Nov 2009 Dec 2009 Jan 2010 Feb 2010

Summary

- Measurements underground reflect radon levels with little or no mitigation efforts in place: minimal/unstable ventilation (30-50% of historical capacity), no layers resistant to diffusion, no radon removal systems.
- Measurements reflect relationship of radon with exposure to surface area of rock— i.e. air direction reversals in Ross Shaft.
- Moisture in the rock, presence of iron oxide may play a role in enhancing the radon levels on the 4850L, and others that were dewatered.
- Improvements to the ventilation system, receding water levels will change the ventilation conditions underground and therefore also the radon levels.
- Long term measurements still running on the 1250L/4850L Ross Stations, 4850L Yates. Would like to add a surface location as well.