Administrative Details

Dinner tonight (~\$25 per person) at Ah Hong Restaurant (10 min walk) Headcount and Vegetarian Menus

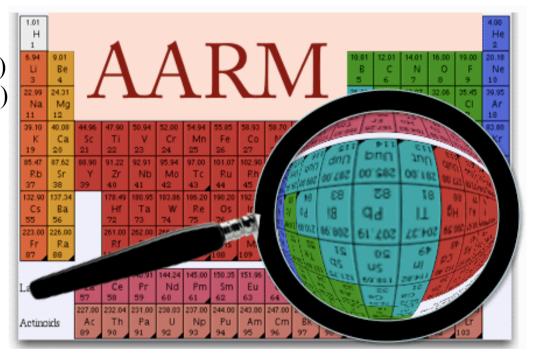
Meeting Minutes: Keenan Thomas, Angela Chiller All talks in pdf version: please give to Chao Zhang

They will be posted in a wiki link

Why we are holding our meeting here!

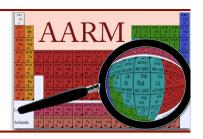
Forecast for Northern Black Hills: Northwest winds 5 to 15 mph. Wind chill readings 10 below to zero.

Winter Weather Advisory in effect until 1 PM MDT Friday...


Assay and Acquisition of Radiopure Materials

Principle Investigators

Priscilla Cushman (University of Minnesota)
Dongming Mei (University of South Dakota)
Kara Keeter (Black Hills State University)
Richard Schnee (Syracuse University)


Engineering Consortium

CNA Consulting Engineers (Lee Petersen)
Dunham Associates
Miller Dunwiddie Architecture, Inc

- Characterize radon, neutron, gamma, and alpha/beta backgrounds at Homestake
- Develop a conceptual design for a common, dedicated facility for low background counting and other assay techniques.
- Assist where appropriate in the creation of common infrastructure required to perform low background experiments.
- Perform targeted R&D for ultra-sensitive screening and water shielding

FAARM vs AARM

AARM is the collaboration, which must have reps from the other ISE

- 1. New infrastructure requirements will include screening, etc.
- 2. Need better representation contact all ISE

AARM should identify needs, but not necessarily fund

- 1. Surface facilities (NAA, ICPMS, ...)
- 2. Radiochem labs, Pre-screeners
- 3. Electroforming needs beyond Majorana
- 4. Storage of materials underground
- 5. Exploration of crystal and detector fab underground

AARM is the global integration of low background needs with solutions

FAARM is the Physical Lab at the 4850 level with staff and screening

We have been given funding to do the engineering of FAARM, but only so much of AARM as is necessary to design FAARM

New FAARM Design

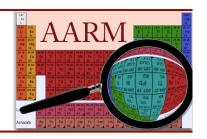
Budget and Space available is smaller than expected. Need to redesign with that in mind

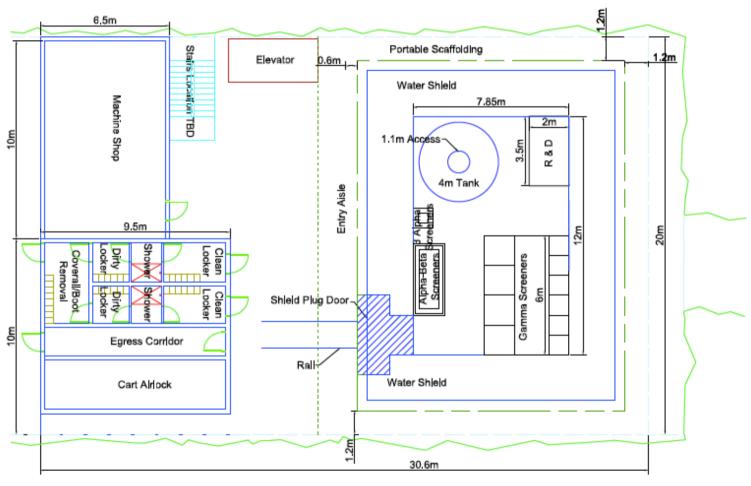
Preserve the basic design components:

Clean Room environment for the whole FAARM
Common hydrogenous shielding with active muon veto for screeners
Inside Shield

Enough space & power for the screeners requested by the ISE Additional shielding (much reduced) for sensitive screeners
An ultra-sensitive immersion screener (LS – modeled on Borexino CTF)

Outside Shield


Sample prep, storage, machining, assembly, offices


Maybe only 3 ISE will go forward. Are we DUSEL or are we ISE???

Danger! If we are perceived to take money away from other ISE, then they will add their own screeners to their ISE underestimate the cost, time, and throughput

New FAARM Design

(a recent drawing... still changing)

Collaboration Meeting: Purpose

Meet the March 31 deadline of a cost estimate

Finalize our Design Concept Find and change major mistakes Cost it

Gather information and ideas that will be incorporated in the next iteration

General design comments

Refine number and type of screener

Define Room Shield technology (explore options, etc)

Design concepts for the Immersion Tank

We cannot do this alone.

Restructure our collaboration into working groups and identify more real collaborators

Working Groups become the Coordinating Principle - A wish list for groups... RECRUIT!

Hydrogenous Shield Design (Prisca)

DongMing Mei, Jeff Martoff, Lee Petersen, Bob Altes, ...

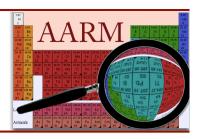
Immersion Tank (Kara)

Richard Ford, Frank Calaprice, Henning Back ...

Screeners (DongMing)

Richard Schnee, Jodi Cooley, Tullis Onstott, Tom Kieft, Rob McTaggart ...

Characterization (DongMing)


Prisca, Kara, Undergrads,

Engineering Integration (Lee)

Pl's + Bob Altes, Steve Marks, YuenDat

Apparently, we still have to make this case.

Why do we need a common Low Background Facility?

- · Cost effective sharing of resources, close to experiments
- Unified scheduling tools and infrastructure will streamline counting and match users to the sensitivity and modality needed.
- Common materials database and shared experience
- · Electronics pool, code repository, unified analysis system
- Expert Technicians and Training center
 can become a center for new R&D in screening and assay
 develops new field of low background techniques
- Large enough to include on site clean machine shop, chemical services, radon-free storage and assembly areas, common shielding and shielding elements available

There is an alternative model Requires Scheduling and Integration Tools

Enter into agreements with Gran Sasso and Modane
Buy dedicated screeners housed there
Pay into a common fund
Pay-as-you-go User

Build up existing American Labs

Kimballton

Soudan

WIPP

SNOLAB

New techniques supplement counting Mass Spec, chemical, etc.

Collaboration Meeting: Agenda

- 9 11 General schedules and goals (FAARM, DUSEL, S4 Process)
- 11 -1 Characterization of Backgrounds, Radon, Materials *Lunch*
- *** Change in schedule: Tullis Onstott: Bio, Geo needs
- 2 4:30 Creating a Shielded Room (water shields and engineering)
- 4:30 7 Immersion Tank concepts *Group Dinner*
- 9 11 Screeners
- 11 12 Auxiliary Services, Surface Bldg, Other techniques
- 12 1 Bio, Geo needs (moved). Organization of a user facility *Box Lunches:* Conclusions and Action Items.

Afternoon free to work on action items and network on costs.

Milestones for the AARM Cooperative Agreement Site Characterization and Simulation Studies

12 month Milestones	24 month Milestones	36 month Milestones
Collate previous measurements,	Characterize site: Measure	Finish site characterization
(radon variations, neutron and	radon, n,γ at all accessible levels	
gamma fluxes and rock		Establish joint backgrounds
radioisotope information)	Host ILIAS measurement team	working group with new
	and cross correlate with their	European infrastructures
Prepare site characterization	measurements	organization.
database and begin targeted	D	C
measurements.	Determine minimum acceptable	Conceptual plan for radon
	radon levels for screening, storage, and experiments.	mitigation
	storage, and experiments.	
Setup site-specific n, y GEANT4	Optimize external water shield	Conceptual design of the
MC of water shield and rock	thickness, radiopurity of	surrounding water shield
(SD and UM)	structural members (SD and UM)	
Study immersion tank parameters	Define immersion tank properties	Conceptual design of the ultra-
Optical properties, H2O and LS	decide between H2O and LS,	sensitive immersion tank
purity (BHSU)	active vs passive, size and	
	number of ports	

Milestones for the AARM Cooperative Agreement Determining the parameters of the FAARM

24 month Milestones	36 month Milestones
Decide on number, type and sensitivity of screeners to be located inside the FAARM	Determine placement of the alpha, beta, and gamma screeners within the FAARM
Preliminary simulations of backgrounds for beta screening.	Finish simulations of backgrounds for beta screening
Define type and amount of additional shielding needed for individual screeners based on simulations and requirements	Design of additional shielding configurations for screeners based on the sensitivities required for each screener.
Determine footprint of auxiliary services, such as a clean machine shop, material storage, the water purification plant, sample preparation and wet chemistry labs	Conceptual design of the FAARM infrastructure
	Decide on number, type and sensitivity of screeners to be located inside the FAARM Preliminary simulations of backgrounds for beta screening. Define type and amount of additional shielding needed for individual screeners based on simulations and requirements Determine footprint of auxiliary services, such as a clean machine shop, material storage, the water purification plant, sample preparation and wet chemistry