FAARM's In Berkeley?

Ω

qc

102

3×105

DUSEL Design Baseline

Steve Marks Engineering Manager, Science Program

Sec. K-K Sec. K-K University of California, Berkeley GENERAL NOTES March 19, 20, 2010

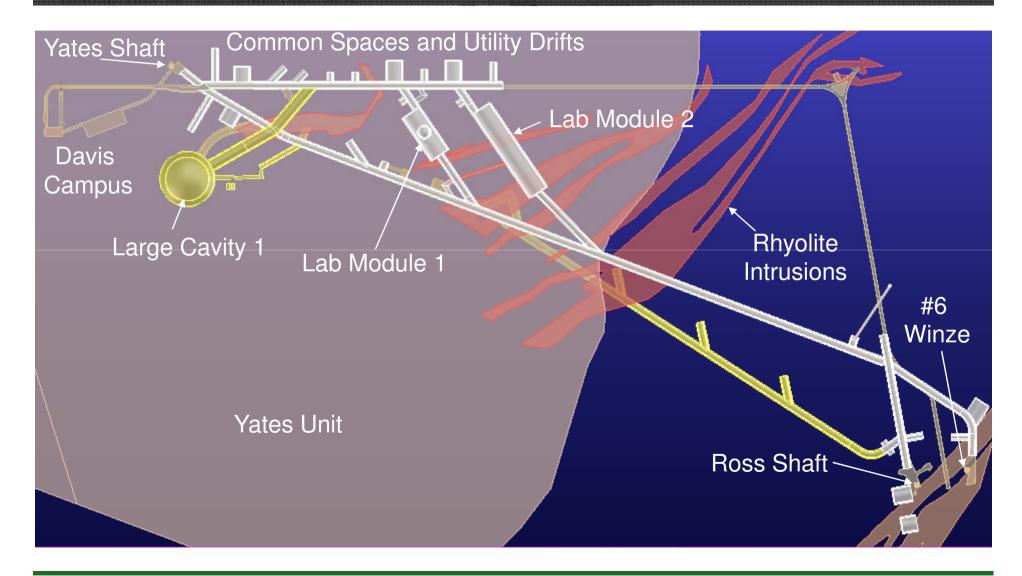
> neral Notes lee / is to be erected with marks on bee of the same and as they appeor on e fraction Drawling. Vide comparisons to be riveted erront

Figure Courtes PDG and LBN

109

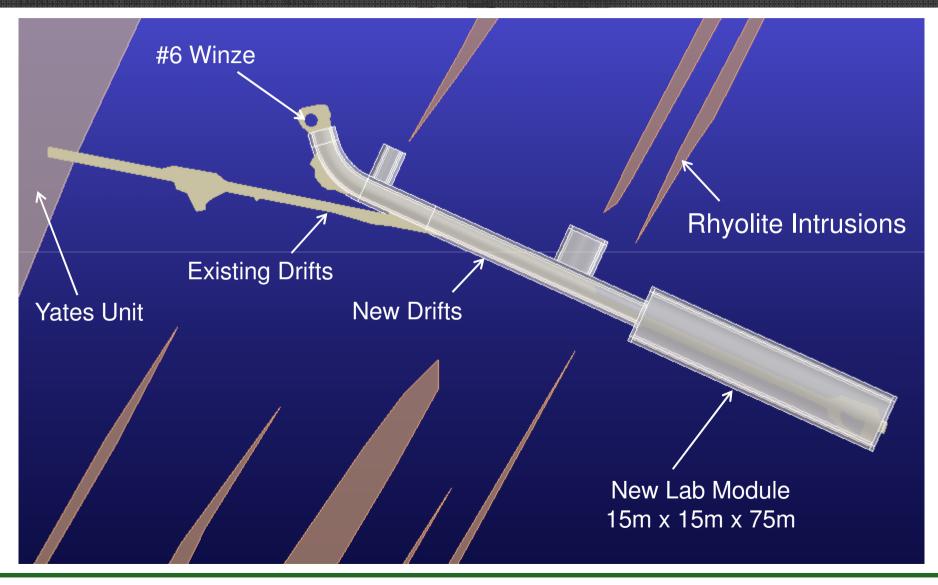
 \mathbf{v}

Agenda


- Description of DUSEL Design Baseline
- Assumed ISE Configuration Basis of Design
- Schedule
- Issues for FAARM to Consider

NSF Guidance

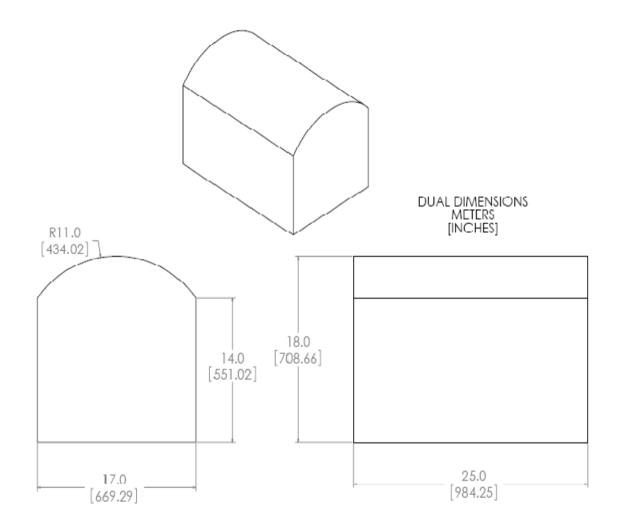
- Design to cost: \$750M (FY09\$) including 35% Contingency
- DUSEL Facility (including mid-level and deep campuses)
- Diverse and Compelling Suite of Experiments
 - Long Baseline Neutrinos
 - Proton Decay
 - Neutrinoless Double Beta Decay
 - Dark Matter Searches
 - Additional Compelling Physics Experiments
 - Biology, Geology, Engineering Experiments
 - Education and Outreach Program


Laboratory Design Baseline Yates Ross Shaft Shaft Lab Modules Davis at 4850L Campus Large Cavity 1 4850L #6 Winze 7400L

Laboratory Design Baseline – MLL Campus

NSF Annual Review – February 9 – 11, 2010

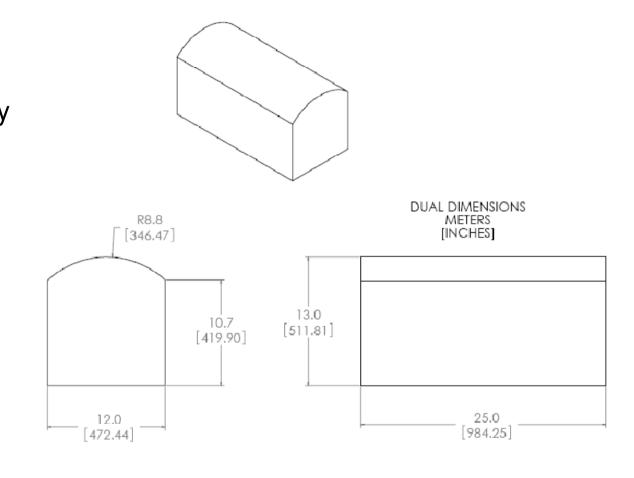
Laboratory Design Baseline – DLL Campus

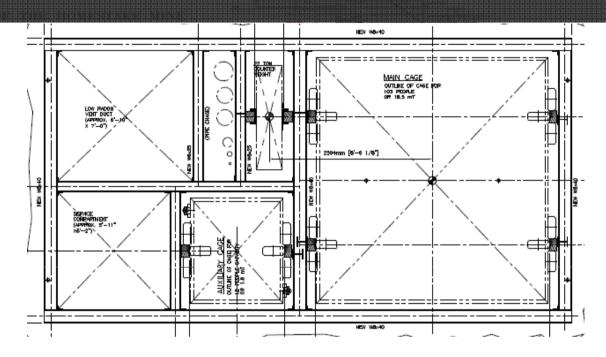

NSF Annual Review – February 9 – 11, 2010

Homestake DUSEL

Laboratory Design Baseline – Constraints

Assumptions for MLL:


- Three experiments of about equal size.
- Lay-down and assembly space equal to the allotted space of a single experiment
 - Must be shared.
 - Will require phased installation of experiments.
- 2m for crane hook clearance.
- Width allowance of 3m for utilities and egress.


Laboratory Design Baseline – Constraints

Assumptions for DLL:

- Two experiments of about equal size.
- Lay-down and assembly space equal to the allotted space of a single experiment
 - Must be shared.
 - Will require phased installation of experiments.
- 2m for crane hook clearance.
- Width allowance of 3m for utilities and egress.

Laboratory Design Baseline - Hoists

Access	Height [m]	Length [m]	Width [m]	Capacity [kg]
Ross cage	2.2	3.8	1.3	6100
Yates Super-cage	4.9	4.1	3.2	18,000
Yates personnel lift	2.5	1.5	1.3	2000
#6 Winze cage	2.2	3.7	1.3	6400

NSF Annual Review – February 9 – 11, 2010

Draft ISE Configuration Assumed for Lab Design

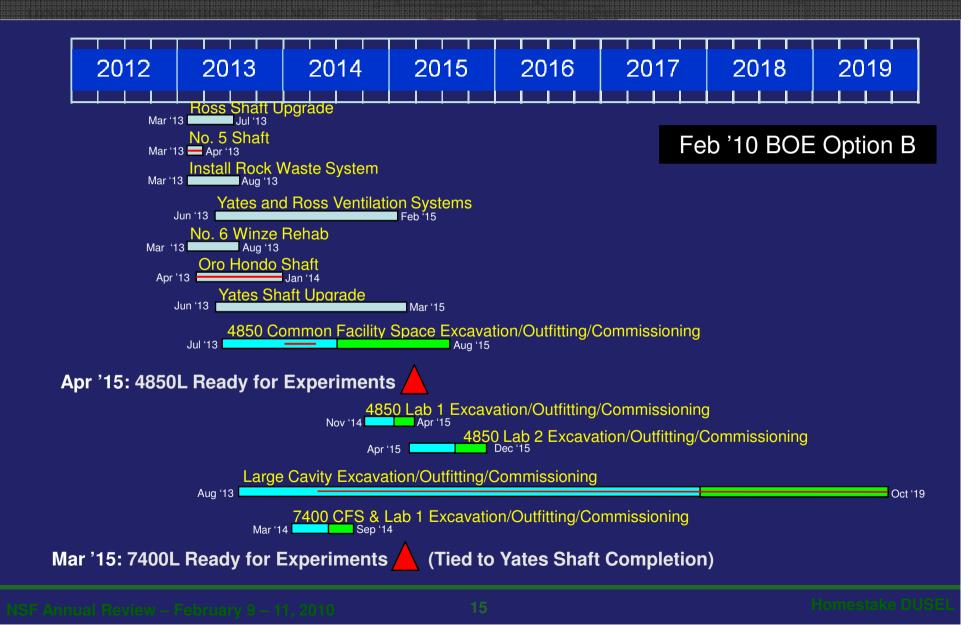
- Neutrino oscillation, proton decay
 - Water Cherenkov detector(s)
 - LAr TPC detector(s)
- Two dark matter experiments
 - Multi-Ton Cryogen (LZD, MAX)
 - Solid State (GEODM)
 - Multiple Bubble Chamber Modules (COUPP)
- Two double beta decay
 - Multi-Ton Cryogen (EXO, 1TGE cryo option)
 - Solid State (1TGE)
- Nuclear astrophysics DIANA
- Low background counting FAARM

Assumed Physics Experiment Configuration

- Mid-Level (4850L) Campus
 - Lab Module 1, 50m
 - Single isolated experiment
 - DIANA
 - Or one or two other experiments:
 - DM, DBD, FAARM
 - Lab Module 2, 100m
 - Three experiments
 - Cryo DM, Cryo DBD, FAARM
 - Or Other combination of DM (any), DBD (any), FAARM

Assumed Physics Experiment Configuration

- Mid-Level (4850L) Campus
 - Davis Campus Pre-DUSEL Outfitting
 - Cavern:
 - 3T Cryo Detector
 - Or Other DM, DBD, FAARM
 - Auxiliary Room
 - Currently outfitted for electroforming, clean machining and assembly, mechanical support
 - Or COUPP, FAARM
- Deep-Level (7400L) Campus
 - Lab Module 1, 75m
 - DM (GEODM, COUPP), SS DBD (1TGe)
 - Or smaller Cryo DM, DBD


BGE Experiment Configuration

- Candidate Locations Identified
- CO₂ Sequestration: Surface ~1250L
- Coupled Processes: 4850L
- Fracturing: 4850L
- Deep Drilling: 7400L
- Variety of distributed sensor and sampling experiments
 - Transparent Earth
 - Optical Fiber Sensors

Schedule Overview to MREFC

- PDR Dec. 2010
 - ISE PDR Tasks
 - CDR level cost and schedule estimates 3/31/10
 - April '10 June '10: Refine layouts, cost, schedule to fit in "box"
 - Draft PDR Sept. '10
- NSB Presentation Spring 2011
- FDR 2011, 2012
- MREFC, Begin Construction 2013

Construction Schedule Estimate - Optimistic

Some Issues for FAARM to Consider

- How will this be phased?
 - Connection with Early Science?
 - Initial Screening for Construction of other Experiments
 - Next Generation R&D
- Concentrate on Counting and Screening Functions
- DUSEL Responsible for Other General Purpose, Related Functions
 - Clean machining
 - Clean assembly
 - R&D Space