Shielding and active veto for EURECA

Vitaly A. Kudryavtsev

University of Sheffield

Contributions from many others

Outline

- Spectra of gamma-rays and neutrons.
- Gamma-ray and neutron transport through the shielding:
 - Water shielding against high-Z/low-Z combination.
 - 'Submarine' against 'swimming pool'.
- Water Cherenkov muon veto for EURECA: how efficient will it be?

Gamma-ray and neutron production

- Gamma-ray spectra from GEANT4 (L. Pandola). When simulating the whole decay chain be careful with timing precision.
- Neutron spectra from modified SOURCES4A (Wilson et al. Sources4A. Technical Report, LA-13639-MS (1999); Carson et al. Astropart. Phys. 21 (2004) 667).

19/03/2010, Berkeley, AARM-S4 meeting

Neutron spectra in different rocks

- Spectra strongly depend on the material (composition).
- Hydrogen reduces neutron flux on the rock face (after transport) by a factor 4.7 (1.8) above 100 keV (1 MeV).

19/03/2010, Berkeley, AARM-S4 meeting

Gamma-ray attenuation in lead

- A spectrum at Boulby (from rock);
- B behind 5 cm of lead;
- C 10 cm of lead;
- D 20 cm of lead;
- E 30 cm of lead;
- F 20 cm of lead and 40 g/cm² of CH₂.
- From M. J. Carson et al., Nucl. Instrum. and Meth. A 548 (2005) 418.

19/03/2010, Berkeley, AARM-S4 meeting

Neutrons in water and CH₂

- Neutron attenuation in water and CH₂ V. Tomasello, PhD Thesis, University of Sheffield (2009).
- Inelastic scattering in lead helps with neutron attenuation at E > 1 MeV.

19/03/2010, Berkeley, AARM-S4 meeting

GEANT4 vs MCNPX

- Neutron fluxes behind shielding.
- 50% higher flux in MCNPX than in GEANT4 after 30 cm of lead and 40 g/cm² of CH₂.
- From R. Lemrani et al. Nucl. Instrum. and Meth. A 560 (2006) 454.

19/03/2010, Berkeley, AARM-S4 meeting

ULISSE and EURECA

19/03/2010, Berkeley, AARM-S4 meeting

Attenuation in water

Spectra of gamma-rays from U in concrete.

19/03/2010, Berkeley, AARM-S4 meeting

- Fluxes of gammas and neutrons from concrete (30 cm) dominates over that from rock (only <5% of neutrons are coming from rock);
- Intensities and spectra from rock and concrete are very similar;
- If there were no concrete, the flux from rock would be attenuated in almost exactly the same way.

Spectra in EURECA

- Rate of electron recoils at 10-50 keV per year behind 3 m of water (2 cm thick vessel of the water tank + ~2 cm thick copper cryostat).
 - 785 in Ge (506 kg);
 - 274 in CaWO₄ (577 kg).

19/03/2010, Berkeley, AARM-S4 meeting

per year at 10-50 keV in 100 kg of Ge from the water tank stainless steel vessel (2 cm thick) along the walls.

• About 10⁶ electron recoils per year at 10-50 keV in 100 kg of Ge from the water tank stainless steel vessel (2 cm thick) along the walls.

19/03/2010, Berkeley, AARM-S4 meeting

Muon generator: MUSUN

 Zenith and azimuthal angular distribution of muons as generated by MUSUN in comparison with the data from the Frejus proton decay experiment.

19/03/2010, Berkeley, AARM-S4 meeting

Muon-induced neutrons: Ge target

Spectrum of nuclear recoil energy depositions in individual crystals - all multiplicities. Other energy depositions are assumed to be not seen.

19/03/2010, Berkeley, AARM-S4 meeting

Spectrum of single nuclear recoils. Other energy depositions are assumed to be not seen in the detector. The energy threshold was assumed to be 10 keV.

Vitaly Kudryavtsev

 10^{7}

Muon-induced neutrons: Ge target

- Only single nuclear recoils (without any other energy deposition):
- Only 12 events in 7.4 years.
- 1.6 ± 0.5 events/year at 10-50 keV (2 runs). This is under the assumption that the water tank does not have PMTs or veto is not switched on.
- No events in anticoincidence with veto.
- One event with energy deposition in veto of only 0.278 GeV.
 Others with E_{dep} > 1 GeV.

Run 2: single nuclear recoil events

event	tot veto deposition [GeV]					detector deposition [keV]			incident neutron	
	tot em	tot μ	tot hadr	tot nRecol	TOT	$\mathrm{nR} > 10 \mathrm{keV}$	nR < 10 keV	TOT	\mathbf{volume}	process
1	0.270	0.146	91.6×10^{-3}	187×10^{-6}	0.278	16.0	-	16.0	$\mathrm{rock}/\mathrm{vessel}$	p-In/n-In
2	0.491	1.26	0.629	0.115×10^{-6}	1.89	27.4	-	27.4	vessel	ph-In/n-In
3	2.63×10^{-3}	0.923	0.127	69.1×10^{-6}	1.05	14.3	9.66	35.7	vessel	Mu-CapAtRest/n-In
4	0.592	1.36	62.7	10.4×10^{-3}	64.6	16.4	-	16.4	water/vessel	ph-In/n-In
5	2.25	1.47	-	-	3.72	17.5	0.392	17.9	vessel	ph-In
6	0.180	1.29	31.4	4.21×10^{-3}	32.8	12.3	-	32.8	water/vessel	ph-In/n-In(no sec n)

Spectra from run 3: Ge + CaWO₄

19/03/2010, Berkeley, AARM-S4 meeting

Interesting event

High-energy neutron (~230 MeV) was produced in rock together with other neutrons. It was able to pass through water producing other neutrons and finally hit one crystal.

19/03/2010, Berkeley, AARM-S4 meeting

Conclusions

- Shielding for 1 tonne scale experiment:
 - 20 cm of lead + 40-50 g/cm² of CH_2 or
 - 3 m of water.
- Optimistic results for muon-induced neutrons.
- 1.6 ± 0.5 events/year/tonne single Ge recoils at 10-50 keV; similar rate in CaWO₄ but mainly O recoils at high energies.
- No event survives veto cut (*E* > 0.2 GeV) in 11.1 years of simulated statistics. One event: *E* (veto) ~ 0.28 GeV. Others: *E* (veto) > 1 GeV.