Framework of AARM Simulation Package

Chao Zhang on behalf of simulation group

Feb. 25, 2011, AARM Collaboration Meeting, Minneapolis

The Goal of AARM Simulation Package

Nov. 2010 AARM collaboration meeting decided to develop an integrated simulation package based on the following motivations:

- Provide the collaboration with a simulation package to support its design, operation and data analysis.
- Incorporate all characterized Homestake background data which will be shared with modular geometries.
 - Homestake external muon, gamma, neutron, radon background and rock composition have been measured at various level of depth.
 - According database is under construction.
 - Various geometry modules will be developed.
- Dedicated physics focusing on low energy region.
 - Rich and selectable physical models and processes.
 - Evaluated physics process and database for interested elements.
- Retrievable output results.
 - Detailed historic and event information.
 - For verification purpose, retrieve tracking information for any interested event, step by step.

Existing Packages

(DUSEL-related)

- ★ MaGe G4 base, integrated simulation package for GERDA and Majorana.
 - rich physical processes included
 - dedicated event generators: radioactive sources, point sources, signal sources...
 - support different geometries(include user defined) and output schemes.
 - well maintained, documented

- ★ LUXSim simulation package for LUX.
 - simple but rich physics list
 - component-centric approach, easily scalable to different geometries
 - multiple sources and activities
 - optimized management with sub-system
 - automatic documentation in the data file

Rich and Robust !!!

Simple and Dynamic!!!

Flow Chart of the Framework

Basic Structure/Function - Geometry

- A 200m³ experiment hall is defined as the world volume which is scalable using macro commands.
- Shared geometries, such as cavern rocks, concrete, water tank, muon veto, can be switched on/off using input commands.
- Individual modules will be selected and loaded as specified daughter geometries before the beamOn.
- Using "UpdateGeometry()" method to refresh modified geometries.
- Detailed materials and their optical attributions will be developed.

R & D Space

FAARM Module Length

Office Space & Control

Stairs Location TBD

Basic Structure/Function - Physics

- Using G4VModularPhysicsList to include hadronic, EM, decay, optical physics.
- Physics modules can be selected using macro commands. "UpdatePhysics()" method must be use to refresh the change.
- Every physical process/cut can be activate/inactivate or reset during the run.

Basic Structure/Function - Generator

- Includes various background, calibration and signal sources which can be specify in macro commands.
- Multiple sources can be generated at a point or uniformly inside/on-surface of any specified geometry cell.

Basic Structure/Function - AARMCore

- Before the "BeamOn", it collect and calculate geometry, physics and source parameters, allocate position information for event generator.
- As an information exchanging harbor, it access each necessary class and manages data processing/transporting.
- Save all history information, mediate results event by event to output class.

```
//Accumulate all used physical volumes
   void AddPhysicalVolume(G4VPhysicalVolume* vol)
   void CalculateVolumeParameter();
   std::vector<volumeInfo> GetVolumeParameter()
   G4ThreeVector GetUniformPositionSolid(G4String volName);
   G4ThreeVector GetUniformPositionSurface(G4String volName);
//Physics processes lookup table
   G4String * processNameArray;
//Record Primary particle information
   std::vector<primaryInfo> GetPrimaryParticle();
//Record stepping information
   void RecordStep( stepInfo stepping);
   std::vector<stepInfo> GetStepInfo();
   void DumpEventInfo();
//Set and get random seed
    G4int GetRandomSeed() {return randomSeed;};
//Mediate output recording
   void OutputRecord(G4int);
```

Basic Structure/Function – I/O

- Various example macro inputs will be developed to demonstrate different simulation purpose.
- Collect all the historic information to make the result repeatable.
- Use verbose level to control the output recording size.
- Multiple output schemes will be developed to support different needs

/control/verbose 0
/run/verbose 0
/event/verbose 0
/tracking/verbose 0
Select physics models
#/AARM/phys/select QGSP_BERT_HP
useOpticalPhy is set to be false as default
#/AARM/phys/useOpticalPhys true
This method must be included
/run/initialize
Select geometry module
/AARM/det/select SimpleGeometry
geometry must update once being changed
/AARM/det/update

Set random seed for current run
/AARM/setRandomSeed 900854369
Generate event inside/surface in specified
geometry cell
#/AARM/source/select Rn222 Room solid
/AARM/source/select Rn222 Room surface
#/process/inactivate msc
/AARM/beamOn 1

Historic Information:

G4version, SVNRevision, inputCommands, volumeInfo, processInfo, sourceInfo, randSeeds

Step Information:

evtNb, stepNb, trackNb, parentNb, KE_keV, Edep_keV, V_name, V_next, particleID, position_cm, momentum_xyz, globalTime, processName, sourceID, sourceKE_keV, sourcePosition_cm, sourceMomentum_xyz

Basic Structure/Function – Event tracking

- Retrieve interested events according to the historic information provided in output.
- Tracking the events step by step to identify the issues in the processing.

⁴⁰Ar Level Scheme

Package Status

- Package takes Geant4.9.4 as its working base.
- The basic structures are finished and initialized to SVN repository(http://svn.csci.usd.edu/AARM).
- The framework are divided to several subsystems for job taking(more manpower needed):
 - Management & physics Chao(USD)
 - Input/Output Oleg(USD)
 - SVN administration Doug(USD)
 - Geometry & materials Anthony(UMN)
 - Generator ?
 - Tracking & visualization ?

Future Plans

- From now on
 the end of this year
 - The primary simulation package will be formed and released for using.
 - Focus then will shift to low energy physics issues.
- $2012 \rightarrow 2015$
 - Physics and database checking will be performed element by element.
 - Validation, bug report/fix.