# Cosmogenic Simulations with Geant4 and FLUKA

### A.N. Villano<sup>1</sup> A. Empl<sup>2</sup>

<sup>1</sup>University of Minnesota

<sup>2</sup>University of Houston

November 11, 2011

### Table of contents



2 The Standard Simulations

3 Further Studies



### what do we want?

#### for low background underground experiments

# How many neutrons will not be able to be vetoed in an experiment?

- depends on neutron flux in cavern
- also depends on electromagnetic signatures and their time-space correlation

# what are the problems?

#### for low background underground experiments

- measurements are difficult for a variety of reasons
  - data slow to come in
  - suitable locations hard to find
  - correlations in time and space almost impossible to measure
- often small effects in tails of distributions can be important
- still there are a number of experiments with useful data (NMM,LVD,Borexino,KAMLAND...)
- need more physics (particle transport equations or track-by-track simulation)
- correlations difficult with particle transport so usual approach is simulation

# standard software

- $\bullet$  for cosmogenics this means studying  $\mu^{+/-}$  cascades virtually, then using data to verify
- Geant4 and FLUKA are widely used for this purpose in underground science

#### Geant4

- http://geant4.cern.ch
- Iatest version: v4.9.4.p01
- does not yet include latest update to  $\mu$ -nuclear interaction

#### FLUKA

- http://www.fluka.org
- latest version: v2011.2.6

# standard software (2)

#### Geant4 (our version: v4.9.3+)

- open source
- particle tracking and microscopic interactions included
- modular and customizable by users

#### FLUKA (our version: v2011.2.5)

- closed source
- neutron tracking with energy groups
- switches for features like light ion tracking

# simulating cosmogenics

- from discussion at the previous AARM workshop a series of simulations were suggested with simple geometry but varied materials and  $\mu$  energies
- with  $\mu^{+/-}$  incident on a cylinder radius 11m and thickness 3200 g/cm² with axis along  $\hat{z}$
- neutron counting confined to inner 10m radius and 1600 g/cm<sup>2</sup> to select an equilibrated volume

# simulating cosmogenics (2)



# simulating cosmogenics (3)



# materials

| Material Name               | Chemical Composition           | Density $(g/cm^3)$ |
|-----------------------------|--------------------------------|--------------------|
| Liquid Scintillator         | C <sub>9</sub> H <sub>12</sub> | 0.887              |
| Water                       | $H_2O$                         | 1.0                |
| Salt                        | NaCl                           | 2.17               |
| Carbon                      | С                              | 2.267              |
| Calcium Carbonate (calcite) | $CaCO_3$                       | 2.71               |
| Iron                        | Fe                             | 7.874              |
| Lead                        | Pb                             | 11.342             |

Table: Table of materials and densities

## statistics

| Material Name       | Energy (GeV) | Geant4 Primaries $(\mu^-/\mu^+)$ | FLUKA Primaries $(\mu^-/\mu^+)$ |
|---------------------|--------------|----------------------------------|---------------------------------|
| Liquid Scintillator | 10           | 600k/600k                        | 1.2M/-                          |
| Liquid Scintillator | 30           | 100k/100k                        | 1.2M/-                          |
| Liquid Scintillator | 100          | 200k/200k                        | 1.2M/-                          |
| Liquid Scintillator | 280          | 1.2M/1.3M                        | 1.2M/-                          |
| Liquid Scintillator | 1000         | 10k/-                            | 1.2M/-                          |
| Lead                | 10           | 550k/550k                        | 800k/-                          |
| Lead                | 30           | 550k/550k                        | 1.1M/-                          |
| Lead                | 100          | 530k/510k                        | 1.2M/-                          |
| Lead                | 280          | 530k/510k                        | 500k/-                          |
| Lead                | 1000         | 441k/222k                        | -/-                             |

#### Table: Table of simulation statistics

### our goals

#### AARM Feb. 2011 charge

- count neutrons in materials without double counting
- $\bullet$  obtain information about reaction mechanisms,  $\mu$  spallation,  $\pi$  spallation ...
- simulations at rock/cavern boundaries with empty cavern

#### further goals

- find the specific reasons for differences in Geant4 and FLUKA
- understand the microscopic processes and how they are handled in both codes for large cascades
- through these excersizes find the most efficient way to make use of various data that has been taken at underground sites

### scintillator with 280 GeV $\mu^-$



# scintillator with 280 GeV $\mu^-$ (2)



# scintillator with 280 GeV $\mu^-$ (3)



# scintillation results

- it is clear that the μ-nuclear interaction is very important to produce accurate neutron spectra, especially for capture multiplicity
- the CDMS collaboration found that the μ-nuclear interaction included in Geant v4.9.3 was not producing enough neutrons but the new version of the interaction comes closer
- with the Geant v4.9.3+ we still have under-prediction of neutrons from capture
- there might be a slight mismatch in neutron capture time between Geant v4.9.3 and FLUKA
- simulation data will be used to isolate simulation differences

### energy flux comparison



# energy flux comparison (2)



AARM Workshop Nov. 2011 Cosmogenic Simulations with Geant4 and FLUKA

# energy flux comparison (3)



# energy flux comparison (4)



# energy flux results

- for 280 GeV scintillator the energy flux agrees quite well with some minor Geant v4.9.3+ under-prediction in the 1 GeV neutron energy range
- for 100 GeV lead the energy flux disagrees by a large factor
- it is clear that at the high energy for Geant v4.9.3+ the scintillator and lead spectra do not overlap and scintillator actually out-produces lead
- these results are **preliminary** and will be scrutinized in detail before any judgment about either FLUKA or Geant is made

# fragment analysis with 280 GeV $\mu^-$



# fragment analysis results

- light fragments are not produced by default in FLUKA and it is not clear that the deuteron is treated correctly if it is produced
- since deuterons are very loosely bound when production of neutrons is concerned high energy deuterons are also of concern
- preliminary investigations show that according to Geant deuterons can be more abundant than the He isotopes at high energies even when the primary nucleus is an α-cluster nucleus (Carbon).

#### summary

- Geant (v4.9.3+) and FLUKA (v2011.2.5) are used to produce cosmogenic simulations in a cylindrical geometry
- materials and energies are varied in these simulations lots of statistics coming in with SLAC batch farm!
- it is clear that Geant v4.9.3 was under-producing compared to FLUKA and the new μ-nuclear interaction addresses that to a large extent
- this new interaction is in the "special" Geant v4.9.3+ but not yet in general release (v4.9.5)
- going forward to produce large statistics with above versions and all materials
- more detailed flux/production mechanism analysis expected end of this year