Surface Performance of a Bíg Líquíd Scíntíllatíon Detector for Measuring Neutrons

Chao Zhang The University of South Dakota AARM Meeting – Nov 11, 2011 The role of neutrons in underground low background experiments

Fatal background

- behave the same way as signals

Cosmogenic production caused radioactivities

\diamond Two categories

- ✓ radioactive activation
 - (a, n), fission decay
- ✓ spallation & capture neutrons

Related to the local rock composition, radioactivity, and the geometries – a library is need to understand its intensity.

Large Liquid Scintillation Neutron Detector

Detector Design

- ✓ 1m long LS neutron detector filled with 12 liters LS EJ301.
- ✓ Internally covered with diffusive paint EJ520 and purged with Argon gas.
- ✓ 2 Hamamtsu 5" PMTs(R4144) attached to the detector through Pyrex glass windows.

Detector Response

- Working High Voltage: Ch0 2000V, Ch1 2000V, attenuator 23dB applied for Both.
- Time coincidence within 30ns(peak time) are required for two PMTs. Detector response to the room background signal are shown above(Ch0 left, Ch1 right).
- Muon minimum ionization peak and the response to 22Na source along with the Tube are marked in the left figure. We can use these curves for energy reconstruction.

Na22: 1.0μ Ci. Placed at each 2.5 cm along with the tube. AmBe: 3.33MBq. Placed at the fixed position above the detector.

Response to 22Na source

- Actual position VS charge ratio response to 22Na source(Left).
- Total charge (Ch0) VS charge ratio response to 22Na source(Right)

AmBe Source

- AmBe: about 68.3 hours data(left) and the one with background subtracted(right)
- The AmBe source(3.33MBq) is placed at 6.5cm above the detector, close to Ch0 end about 15cm and to Ch1 end about 60cm.

Energy Reconstruction

- AmBe neutrons with cut area0>2500 (Left). Red curve indicates 11 MeV real energy.
- Energy spectrum comparison between the simulated AmBe neutron by assuming 100% detection efficiency and the reconstructed neutron data (Right).
- Quenching factor is applied to convert visible energy to recoil energy.

Detection Efficiency

Room Background Data

• Room Background about 19 days data.

Room Neutron Spectrum

Comparison with Others

- On the roof of a building, NY.
- In the first floor of Patterson Hall, USD

Soudan Data

Soudan Data

Soudan mine 65.2 days data

Current Status

- Detector is working stable at 2000V high voltage with good n/g PSD.
- Muon minimum ionization peak is present with 23dB signal attenuation applied to both PMTs. Together with 22Na source, position and energy relations are well understood.
- By using AmBe source, the detection efficiency for neutrons with energy below 11MeV is calibrated.
- About three weeks surface room background data were accumulated. The detector has been running at Soudan mine for a few months.

Backup I: Optical properties

Backup II: R4144 PMT & EJ301

Part Number	R4144
Туре	Head on
Size	127mm
ActiveDia/L	120mm
Min	300µm
Max	650µm
Peak Sens.	420µm
Cathode Radiant Sensitivity	72mA/W
Window	Borosilicate
Cathode Type	Bialkali
Cathode Luminous Sensitivity	70µA/lm
Cathode Blue Sensitivity Index	9
Anode Luminous Sensitivity	100A/lm
Gain	1.4E+06
Dark Current after 30 min.	10nA
ENI	10
Rise Time	1.5ns
Transit Time	35ns
Transit Time Spread	0.7ns
Number of Dynodes	8
Applied Voltage	3000V
Multi Anode	Ν
Socket Bare	E678-20B

Q.E. ~ 20%

Backup III: Quenching factor

E_visible=E_real*0.5806*(1-exp(-0.2072*E_real-0.00335))