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Geant4/FLUKA Comparison

Goal: Using a simple geometry, compare
Geant4 and FLUKA observables related to
neutron production. Further find the most
efficient subset of observables which
constrain microscopic physics while allowing
comparison to experiments.



Geant4/FLUKA Comparison
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Related to data for scintillator: Borexino, Kamland, LVD



G4/FLUKA Scintillator Distributions
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e Distributions related to data from Borexino, Kamland
e Qualitative agreement between Geant4/FLUKA but important

differences

* Timing spectrum for neutron captures suggests slight

difference in transport

* Multiplicity dist. suggest difference in single neut. processes
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G4/FLUKA Energy Flux / LRT Paper
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A.N. Villano et al. AIP Conference Proceedings 1549 pp 227-230 (2013)
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G4/FLUKA Next Steps (Isotopes)
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See Also: Sarah Lindsay’s talk Friday
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n yield [u-! (g/cm?) "] x10™*

See Also: Allison Kennedy’s talk Friday

G4/FLUKA Next Steps (Yields)
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Geant4 produces more neutrons
in scintillator for monoenergetic
muon primariesin scintillator
The yield is one of the more
possible experimental
measurements

Experimentally, however the
vield is plotted vs. mean energy
at a site, so currently including
simulations with non-
monoenergetic primaries



Streamlined Benchmarking

* Current comparisons use Geant4.9.5/FLUKA
2011.2.17

 Want to converge on a small set of telling
observables which track code ‘quality’

* Can set up benchmark simulations with
standard geometry inputs, for users to check
local simulation versions/options for
correctness for underground physics



“Simulation” Breakout Sessions

Specialized Detector Physics Simulation (Thu 3:30 - 5:00 pm)

e Specialized detector physics
» Specific benchmarking with specialized geometry
* Microscopic data for vetting specialized detector physics
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“Simulation” Breakout Sessions

Cross-Collab. with Neutron Benchmarking (Thu 5:00 — 6:00 pm)

* Useful experimental datasets
 Gran Sasso (LVD, Borexino)
e Soudan (LBCF, MINQS, Soudan 2)
 CERN (HE muon spallation)

e Simulation physics constraint schemes

* Directly measure spallation cross sections?
e Cavern measurements (delayed n’s w/o energy) ... etc
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“Simulation” Breakout Sessions

Simulation Codes (Fri 4:00 — 5:00 pm)

e Simulation packages for low-bknd physics (Geant4,FLUKA,MCNP)
* Processes in each simulation package
* Model for adding to each package
* Relevant processes which exist in each package
» Specific models used by all the processes — and for different
versions of the packages



“Simulation” Breakout Sessions

Cross-Collab. with Radiogenics (Fri 5:00 — 6:00 pm)

* Cross sections data for microscopic (e.g. (alpha,n)) events

Need help fleshing this out, for me | have more questions
than answers here

Where do the (alpha,n) cross section data come from?
Are the databases “complete?”

e Specific small scale cross section data (e.g. (alpha,n))
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Can we constrain cross sections from low-bknd counting
measurements?

How can we implement a simulation of these events most
effectively — throw alphas or throw resulting n’s?
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