.94 Li 3	9.01 Be 4		Д		Д		R)	Ν	Л		0.01 12.01 B C 5 6	14.41 N 7
2.99 Na 1	24.01 Mg 12					<u> </u>	_						
9.10 M	40.08 Ca	44.96	47.90 Ti	50.94 V	52.50 Cr	54.94 MD	55.85 F.e	58.33 Co	58.70		All of	105 292	CR. WAL
9	20	21	22	23	24	25	26	27			1 21	PI1	0
5.47	17.62	10000	91.22	92.91	95.34	97.55	101.07	102 0			i ann	DINT	20
RЬ	Sr	IN	eu	Uß	ΟΠ	D	en	CN		dſ	kin	80 285	001
12.90	38	37	4.0	-91 100-05	42	43	44	100		Tw	83	28	
CS	Ba		H	M	or	KI	ng	G	ro	un	10	a .	
15	56		72	73	24	75	.9	NH.		_		Чd	- L.
:0.00	226.00		261.00	252.00	20.0		No. o			13.3%	15 102	61 202	281
Fr	Ra		P.I	and the second			100	M		1.12	15	20	é
_			-		14424			151.96	N I		1- 121	ernel	2013
		100	Ce	Pr	Nd	Pm	Sm	Eu			3.1.5	-54	14
	-	57 221.00	50 232.04	59 231.00	64 236.03	61 237.00	62 244.00	63 240.00	64		and and	it in the	5.57
rtmak		AC	Th	Pa	U	Np	Pu	Am	Cm	BR.		the level	
		89	90	91	92	23	24	95	26	97	70-		

Introduction to Working Group

International collaboration of rare-event physicists interested in:

- 1. Improved understanding of neutron backgrounds (in general)
- 2. How best to measure, simulate, shield, and veto neutrons
- 3. Organization of data & use for physical constraints
- 4. Other muon-induced backgrounds (e.g., bundles)

Working-group Chair → Ray Bunker Working-group Co-chair → Anthony Villano

Working-group Wiki:

https://zzz.physics.umn.edu/lowrad/nmm

Meetings:

General-interest "summary" meetings → Fridays at 11 am eastern Detailed data-analysis meetings → Tuesdays at 11 am eastern Esnet 886388 (no pin) ... *anyone interested is welcome to attend/present/discuss!*

Introduction to Working Group

Who ...

Directly funded by AARM:

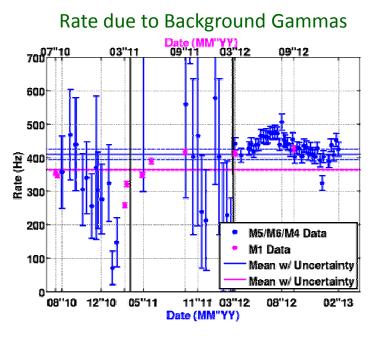
- Syracuse University → Ray Bunker, Yu Chen, Chris Nedlik, Richard Schnee
- U. of Arkansas at Little Rock → Anton Empl, Sarah Lindsay
- U. of Minnesota → Prisca Cushman, Matt Fritts, Sean Geldert, John Greavu, Joseph Jeffers, Anthony Villano
- U. of South Dakota → Dongming Mei, Chao Zhang, (Joel Sander)

Other active groups:

- Berkeley → Raul Hennings-Yeomans
- MIT → Adam Anderson, Julien Billard, Tali Feliciano, Alex Leder
- U. College London → Lea Reichhart
- Yale \rightarrow Thomas Langford

Loosely affiliated groups:

- Case Western → Dan Akerib, Emily Dragowski, Chang Lee
- Regis University → Fred Gray
- Sandia/Livermore National Lab → Adam Bernstein, Caleb Roecker, Melinda Sweany
- U. Bologna → Marco Selvi
- UC Davis → Marc Bergevin, Mani Tripathi
- UC Santa Barbara → Harry Nelson


<u>Neutron Detectors in the Soudan Mine:</u> → see Anthony Villano's talk tomorrow

Neutron Multiplicity Meter (NMM) \rightarrow high-energy neutrons at 2090 mwe

Primary effort \rightarrow finalize measurement using 1st two years of data (ongoing) Improved understanding of detector response:

via Geant4 simulation starting with muons in rock Detector stability via data-driven characterization Effect of afterpulsing in large 20" PMTs

undergraduate analysis projects

Afterpulsing Rate vs. Initiating Pulse Height

Ray Bunker - Neutron Benchmarking

Neutron Detectors in the Soudan Mine:

Neutron Multiplicity Meter (NMM) → high-energy neutrons at 2090 mwe
Primary effort → finalize measurement using 1st two years of data (ongoing)
Improved understanding of detector response:
via Geant4 simulation starting with muons in rock
Detector stability via data-driven characterization
Effect of afterpulsing in large 20" PMTs
Also, continued operations to improve stats & in concert with veto shield ↓
The Soudan full-cavern Veto Shield → showers, bundles & µ-neutron correlations
Fully operational... working on stability and data management
Established correlated GPS time stamps with NMM
Developing general framework to permit correlations with other detectors

Again → see Anthony Villano's talk tomorrow

Neutron Detectors in the Soudan Mine:

Neutron Multiplicity Meter (NMM) → high-energy neutrons at 2090 mwe
 Primary effort → finalize measurement using 1st two years of data (ongoing)
 Improved understanding of detector response:
 via Geant4 simulation starting with muons in rock
 Detector stability via data-driven characterization
 Effect of afterpulsing in large 20" PMTs
 Also, continued operations to improve stats & in concert with veto shield ↓

The Soudan full-cavern Veto Shield → showers, bundles & µ-neutron correlations
Fully operational... working on stability and data management
Established correlated GPS time stamps with NMM
Developing general framework to permit correlations with other detectors
U. South Dakota Liquid-scintillator Neutron Detector → medium- to high-energy neutrons

Continued development of data analysis & simulated response

→ See Chao Zhang's talk tomorrow

Friday Summary Meetings to explore wide range of topics:

³He neutron-capture detector for monitoring reactor neutrons (MIT group) FaNS neutron spectroscopy for high-energy neutron benchmarking → see Thomas Langford's talk tomorrow WATCHMAN anti-neutrino monitoring (& high-energy neutrons) → see Mark Gerling's talk tomorrow Neutron yield in Pb using the ZEPLIN-III muon veto (L. Reichhart @ UCL) Medium- to high-energy flux of neutrons in the Davis cavern (USD group) Simulations to inform next-generation neutron-detector & -veto designs Further international collaboration (*e.g.*, with LVD and Edelweiss) \rightarrow see Marco Selvi's talk tomorrow (LVD) Develop FLUKA model of the NMM for comparison to Geant4 (Arkansas group)

Thursday 3:30-6 pm Breakout Session Identify topics and tasks

Neutron Benchmarking Topics

Measurements → Thu 3:30-4:30 pm

• Where are we now?

 Which neutron/µ-related backgrounds are well measured? Muon-induced neutrons Others? Organization of measurements and constraints?

- What remains to be done?
 - Which backgrounds are still poorly constrained? High-energy neutron flux & energy spectrum vs. depth
 - → which production processes are least well constrained?

→ topology with respect to parent muon/shower
Background from muon bundles
Long-lived isotopes from muon spallation & stopping muons
Radiogenic bencmarking
Others?

Data – Part I \rightarrow Thu 4:30-5 pm

Existing data sets — can new measurements be made with existing data?
LVD, Borexino, and other large-volume detectors

<u>Cross-collaboration with Simulation Working Group</u> → Thu 5-6 pm

Summary papers:

Mei & Hime, PRD **73** (2006) 053004 Araujo *et al.*, NIM A **545** (2005) 398 Kudryavtsev *et al.*, NIM A **505** (2004) 688 Kudryavtsev *et al.*, Eur. Phys. J. A **36** (2008) 171 Wang *et al.*, PRD **64** (2001) 013012

Detector-specific papers:

KamLAND—Abe *et al.*, PRC **81** (2010) 025807 Galbiati & Beacom, PRC **72** (2005) 025807 Modaine—Kozlov *et al.*, Astropart. Phys. **34** (2010) 97 Zeplin III—Reichhart *et al.*, Astropart Phys. **47** (2013) 67 Borexino—Bellini *et al.*, JCAP **1308** (2013) 049 LVD—Persiani *et al.*, AIP Conf. Proc. **1549** (2013) 235

Spallation-source papers:

Chazal *et al.*, Nucl. Phys. A **663** (2000) 885 Marion *et al.*, NIM A **582** (2007) 611 *Friday 4-6 pm Breakout Session Prioritize topics and plan future work*

Neutron Benchmarking Topics

<u>Data – Part II</u> \rightarrow Fri 4-4:30 pm

• Near-term expected data — what can/will we do with data from current experiments?

NMM, FaNS, WATCHMAN, USD detector, and others

Detector Technology → Fri 4:30-6 pm

- Pros & cons of different neutron-detection technologies
 - Iiquid scintillator vs. water
 - Gd vs. Li vs. B doping
 - modular vs. monolithic
 - etc.
- Design/proposal of next-generation neutron detector/facility for underground measurements
 - Also, neutron-veto design & prototyping
- Funding for underground benchmarking in general

Saturday 10:30 am – 12 pm Integration into proposals, Consortium planning, and new integrative initiatives