Benchmarking Breakout Sessions—Summary Report

Primary Question \rightarrow What should we measure and what kind of detector could do it?

(alpha,n)

General agreement that (alpha,n) neutrons are of primary importance for next-generation rareevent searches (DM in particular).

- Explored idea of an (alpha,n) screener ... assay via neutrons by placing sample inside neutron detector in well-shielded installation, e.g. (perhaps in the middle of a FaNS-style detector or large water tank with inner volume doped to be sensitive to neutrons)
- Could be part of a multi-purpose neutron detector (alpha-n and cosmogenics?)
- But such a detector would have to be large (as would the assay samples)
 - So we run into the classic problem of how do you convince the agencies to fund something large for benchmarking only?
- Concluded that (alpha,n) screening is likely impractical for this reason (& low rates)
- Better to focus on the input physics to something like SOURCES
- Dedicated thin-film alpha-beam measurements are probably the right approach
 - Has this been done before? ... how well? ... what are the deficiencies?
- Continued pursuit by AARM to organize/maintain/distribute the relevant cross sections, simulation techniques probably makes sense

Benchmarking Detector Response

There appears to be interest in benchmarking detailed detector response vs. technology in a collaborative/consortium fashion (e.g., verification of NEST and Lindhard-like models)

- For example, with a shared, dedicated facility for measuring nuclear-recoil response in liquid nobles and solid-state detectors
- Each project contributes a small target and some share in the development of the overall setup
- Is there an obvious, pre-existing site for this?
- This may be difficult for cryogenic detectors like SuperCDMS due to dilution fridge requirement

Muon-induced neutrons and showers underground

It's desirable to have more measurements of high-energy neutrons versus depth. However, it's not clear that this can be done with a single detector on a scale that we can propose as a benchmarking experiment because you appear to need something like Borexino.

- It's no longer clear that mu-nuclear neutron production is a problem ... in fact, the Borexino measurement seems to demonstrate that the input physics works well and that we may actually have a problem with the E&M and/or delta-ray production ... but this is a work still in progress and needs to be cross checked with Geant4 simulation to see if similar to FLUKA
 - In any case, Borexino is only one measurement in one material
 - Clear need to understand what other detectors are telling us about other targets
- Perhaps we can get the neutron energy distribution with a relatively modest detector that measures the neutron energy very well (e.g., FaNS-style detector). It need not be large if it can be operated at a series of relatively shallow depths, which would probe a wider range of muon energies ... the key is true neutron spectroscopy, but not too shallow such that you're overwhelmed by low energies & high rates. Such a measurement program may only be good for differential energy spectrum (and not multiplicity, e.g.).

- This program would be more versatile with a muon tag (via full-cavern veto, e.g.).
- Such a detector could then be relocated to a deep installation (like Soudan Veto Shield) once shallow measurements are done (e.g., FaNS and MARS ... what will they do with these detectors when they original programs are completed?)
- How we simulate showers may be more of a problem ... are we getting the multiplicity (of neutrons and muons, e.g.) and topology of shower propagation through rock correct?
 - \circ $\$ We need to understand in detail how muon bundles affect neutron yield
 - Do shower simulations need to be more sophisticated? (e.g., start from cosmic primaries?) ... or do we need more detailed parameterization? (e.g., correlated muons)
 - \circ $\;$ What about muon-coincident/induced gammas, pions, etc? (can we measure this too?) $\;$
 - There seems to be a true lack of such measurements underground
 - Detectors just now turning on may have sensitivity (e.g., DarkSide)
- Other major challenges for simulators? (e.g., correct muon spectra?)
- Better use of fixed-target beam experiments to constrain production-process physics?
 - o Probably not useful for understanding the development of showers deep underground
 - o Older studies (e.g. NA55) were seriously limited by systematics
 - New experiment at CERN will provide data on the time scale of 2-3 years
- Shower constraints?

0

- On shower development using existing experiments?
- What aspects of showers are interesting to simulate/benchmark?
 - Is it different for hadronic vs. E&M? (& can this be measured? ... isn't this what HEP detectors have already done?)
- What can be said with large-volume neutrino experiments? (bundles?)
- \circ $\;$ Info from air-shower experiments like Auger, HAWC, and Veritas?
- \circ ~ IceCube w/ IceTop to reduce systematic of rock propagation?
- Shower topology could be studied inside something like the Soudan Veto Shield with an array of small neutron detectors readout in concert.
 - Perhaps high-pressure xenon gaseous detectors are a technology worth considering
 - Also, doping with heavy elements may provide desired additional information vs. Z
 - Admittedly, this is a bit messy because it involves a mixture
 - For example, LENS experiment and indium doping
 - Maybe we should consider repurposing the NMM:
 - Fill with doped liquid scintillator for improved low-multiplicity sensitivity
 - Separate the two tanks and/or adjust target geometry and/or composition

<u>Misc</u>

It might be worthwhile for AARM to pursue some kind of neutron standard (AmBe?)

• Maybe this includes standardization of neutron calibration techniques, which ties back into the idea of collaborative detector-response benchmarking

Other:

- Is the spectrum of neutron energies resulting from muon capture well known?
 - Perhaps shallow-depth neutron spectroscopy can answer this as well.