Backgrounds in PICO

Eric Vázquez Jáuregui

SNOLAB

AARM Meeting Fermilab; Batavia IL, USA; March 19, 2014

PICO at SNOLAB

SNOLAB

deepest and cleanest large-space international facility in the world

- 2 km underground near Sudbury, Ontario
- ultra-low radioactivity background environment Class 2000
- Physics programme focused on neutrino physics and direct dark matter searches

PICO bubble chambers

- Target material: superheated CF_3I or C_3F_8 spin-dependent/independent
- Particles interacting evaporate a small amount of material: bubble nucleation
- Cameras record bubbles
- Piezo sensors detect sound
- Recompression after each event

Bubble nucleation

Dependence of bubble nucleation on the total deposited energy and dE/dx

- Region of bubble nucleation at 15 psig
- Backgrounds: electrons, ²¹⁸Po, ²²²Rn
- Signal processes of Iodine, Fluorine and Carbon nuclear recoils

insensitive to electrons and gammas

PICO bubble chambers

- Alpha decays: Nuclear recoil and 40 µm alpha track 1 bubble
- Neutrons: Nuclear recoils mean free path ~20 cm 3:1 (1:1) single-multiple ratio in COUPP4 (COUPP60)
- WIMPs: Nuclear recoil mean free path $> 10^{12}$ cm 1 bubble

PICO features

- Energy: threshold detector
- Background suppression:
 - -UG at SNOLAB
 - Water shielding
 - Clean materials
- Background discrimination:
 - -Neutrons: multiples bubbles Nuclear recoil, $l \sim 20~{
 m cm}$
 - $-\alpha$: acoustic parameter Nuclear recoil, 40 μ m track
- Large target mass: COUPP4, COUPP60 PICO-2L, PICO-250L

Backgrounds in PICO: γ rejection

Bubble nucleation probability from gamma interactions in C_3F_8 and CF_3I

COUPP4 at **SNOLAB**: simulations

GEANT and MCNP simulations

• Compare predicted rates of single and multiple bubble events with observation

Threshold is determined using Seitz 'Hot Spike' Model, Phys. Fluids 1, 2 (1958). Eric Vázquez-Jáuregui AARM 2014

Data show a shortfall of events compared to simulation of the Seitz Model

Calibrations

- Lower efficiency for 19 F and 12 C recoils
- Seitz model for ¹²⁷I recoils

 $\mbox{SRIM} \rightarrow \mbox{TRIM}$ calculation

Seitz model:

- 6 keV 19 F recoils, C_4F_{10} (PICASSO)
- 101 keV 218 Po recoils, C_4F_{10} (PICASSO)
- 101 keV 218 Po recoils, CF_3I

Eric Vázquez-Jáuregui

Calibrations

- γ and neutron calibrations
 - AmBe and ²⁵²Cf
 - -⁶⁰Co and ¹³³Ba
 - Neutron beam at Montrea
- COUPP Iodine Recoil Threshold Experiment
 - -Low energy Iodine recoils
 - $-\pi$ beam and silicon trackers
- 88 Y/Be calibration chamber
 - Understand response to low energy recoils
 - Monochromatic low energy neutrons

Eric Vázquez-Jáuregui

COUPP4 at **SNOLAB**: results

456 kg-days, 2474 alphas 1733 alphas (15 keV data) 5.3 alpha decays/ kg-day 95% from radon > 98.9% α rejection > 99.3% (15 keV data)

- 6 events at 8 keV
- 6 events at 10 keV (2 triples)
- 8 events at 15 keV (1 double)

20 WIMP candidates

(Neutrons from rock: < 1/year)

Backgrounds in COUPP4

Internal neutron background

- View-ports: 0.5 ppm 238 U and 0.8 ppm 232 Th, (~ 5 events)
- Piezos: 4.0 ppm 238 U, 1.9 ppm 232 Th and 210 Pb, (~2 events)

Fission and (α,n) on light elements

New piezos built (low background salts)

> New view-ports (synthetic silica)

COUPP4 at SNOLAB: Physics run II

- New physics run in 2012
- 8 singles, 1 double, 1 triple
- Hydraulics failed

- Replace more components
- ICP-MS assay

Piezos detached from IV

Refurbishing the detector

Different target material

Eric Vázquez-Jáuregui

PICO-2L

- C_3F_8 as target material
- spin-dependent sensitivity
- Low energy threshold
- new hydraulics
- new pressure vessel

From COUPP4 to PICO-2L

Eric Vázquez-Jáuregui

AARM 2014

COUPP60 at **SNOLAB**

Eric Vázquez-Jáuregui

COUPP60 at **SNOLAB**

COUPP60

Running in the ladder labs at SNOLAB

• First bubble on May 1, 2013 (radon decay)

- Each part (or set of similar parts) contributes at most 10% of the total background budget (0.05 single-site events per live-year)
- Require fewer than 0.1 total events, including multi-site events, per live-year for each part
- University of Chicago germanium counter
- SNOLAB germanium counters
- ICPMS counting at PNNL
- Radon emanations at SNOLAB

HPGe detector:

- Measure activity in materials
- Data used as input for simulations.
 Ex: (α,n), (γ,n) spontaneous fission

Talk by I. Lawson tomorrow "Low Background Counting at SNOLAB"

PICO-250L

- > $10^{10} \ \gamma/\beta$ insensitivity
- > 99.3% acoustic α discrimination
- Multi-target capability SD- and SI-coupling High- and low-mass WIMPs
- Easily scalable, inexpensive to replicate
- First effort: PICO-2L

Data taking by 2016

PICO-250L

PICO-250L design

• Target fluid:

$$-C_{3}F_{8}$$

- $-CF_3I$
- Inner vessel assembly: ultra-high-purity synthetic fused silica jar
- Outer vessel: Stainless steel ($\phi = 60$ inches)
- Acoustics sensors: piezoelectric acoustic transducers

PICO-250L design

- Outer neutron shielding:
 - neutron moderator
 - -muon veto
- Pressure control unit:
 - expand and recompress the chamber
 - regulate chamber pressure
- Data acquisition:
 - T and P sensors
 - machine vision cameras
 - -acoustic transducers

- External backgrounds:
 - -Rock neutrons
 - Muon induced neutrons
 - $-(\gamma,n)$ reactions
- Internal backgrounds:
 - U and Th: fission and (α,n) on light elements: SOURCES-4C and SNO code
 - $-^{238}$ U direct decay
 - * Materials: SS, quartz, cabling,...
 - * Fluids: water, LAB, glycol, CF_3I/C_3F_8
 - * Radon
 - * Mine dust, veto PMTs
 - * Acoustic transducers

Detectors in GEANT

COUPP60 and PICO-250L GEANT4 models

Eric Vázquez-Jáuregui

Stainless steel, quartz Water/LAB (buffer and tank), propylene glycol

•
238
U, 232 Th, 235 U

Other backgrounds:

- Mine dust
- veto PMTs

PICO-250L: acoustic transducers

Two positions simulated:

(10 ppb 238 U and 232 Th 0.1 ppb 235 U, 10 Bq/kg 210 Pb)

- side only, 25g 2×10^{-8} events/kg-day
- bottom only, 25g 3×10^{-7} events/kg-day

Acoustic simulation in progress for design optimization

screening for salts used in the manufacture of piezoelectric transducers

around 15 samples (high purity germanium detector at SNOLAB) α decays and neutrons from (α,n) :

 $\begin{array}{c} 0.0159 \ \mathrm{ppt} \ ^{238}\mathrm{U} \\ 0.0488 \ \mathrm{ppt} \ ^{232}\mathrm{Th} \\ 0.0025 \ \mathrm{ppt} \ ^{235}\mathrm{U} \\ 25 \ \mu\mathrm{Bq/kg} \ ^{222}\mathrm{Rn} \\ 25 \ \mu\mathrm{Bq/kg} \ ^{210}\mathrm{Pb} \end{array}$

 6×10^{-6} events/kg-day

vetoable: alpha + neutron

Radon deposition and emanation on all surfaces

PICO-250L: radon

Radon diffusion in all fluids

Backgrounds in PICO-250L:

- Learning from COUPP4 backgrounds
- Good control of backgrounds in COUPP60 and PICO-2L
- PICO-250L programme to keep backgrounds under control:
 - Material screening, in-situ measurements
 - Simulations: GEANT and MCNP (independent groups within the collaboration)

Compute Canada: $\sim 10^5 - 10^6$ livetime years simulated