Geant4 Status and Prospects

Dennis Wright
AARM Meeting
21 May 2015

Outline

- General
 - release 10.1 highlights
 - geometry
- Update on Phonons
- Radioactive Decay
- Low energy hadrons
 - NeutronHP
 - ParticleHP
- High Energy Nucleus-nucleus Collisions
- Coming attractions

Release 10.1 Performance Highlights

Speed and memory

- memory space required per thread reduced to less than half
 - does not effect space defined in user code
- up to 10% speedup in several use-cases
- these improvements arise from optimization of multi-threaded code in all parts of Geant4

Electromagnetic Physics

- all internal physics tables now shared among threads
- contribution of EM to memory per thread reduced

Hadronic Physics

improvements in FTF high energy code lead to improved resolution in calorimeters

Shower Energy Resolution in Cu-LAr Calorimeter

 Comparison to LHC test beam data indicates partition of energy among hadrons has improved with recent tuning of FTF mode

New Unified Solids Library

- Deep review of algorithms completed for most geometrical primitives in Geant4
- In most cases speed was increased:
 - time to calculate intersections with tessellated solids dramatically reduced by decomposing its facets into 3-D grid of voxels

VELO detector LHCb

Speed: Multi-union vs. Boolean Solid

Update on Phonons (1)

- Phonon propagation now officially supported in Geant4
 - moved up from example
 - not all features publicly available yet
- Development of G4CMP (phonon and charge carrier simulation for solid state materials) continues
 - currently a single event takes from seconds to minutes -> need to speed up code

Update on Phonons (2)

- Electron drift speed discrepancy vs. MATLAB now resolved
 - reverted to original kinematics calculation for computing Luke scattering
 - results now nearly identical to MATLAB

Update on Phonons (3)

- Dynamic mass bug in Geant4
 - resolution of drift velocity discrepancy uncovered bug in G4Transportation -> field swimmer incorrectly maps velocity to kinetic energy
 - not seen in Geant4 testing because particle masses rarely differ during transport, and if so, mass difference is small
- Bug fixed in patches of 10.1 and 10.0
 - will go into 10.2 minor release December 2015

Radioactive Decay Improvements

- Radioactive decay now reproducible in multi-threaded mode
 - random seed at end of series of events always the same given identical seeds at beginning
 - in 10.0 this was not the case due to complex system of reading in data files
- Complete re-design of RDM package
 - more OO, more easily debugged, old code removed
 - => developers now able to concentrate on single decay channels
 - => significant improvement in energy conservation
 - from \sim keV in some cases to \sim eV for α decay, β decay)
- Atomic relaxation model now applied only to EC, IC

Sample Radioactive Decay Chain

Radioactive Decay Improvements

- Consistent treatment of RDM, photon evaporation databases
 - use G4RadioactiveDecay4.2 and G4PhotonEvaporation3.1
- "Observationally stable" isotopes (²⁰⁹Bi: 1.9 x 10¹⁹ y) now decay
 - to accommodate double beta decay and rare alpha decays
 - users should always put a time cut on their hit collection
- Code for decay by proton emission now included
 - database entries still required yet
- Ions created as needed, rather than all at once at initialization time

NeutronHP

- Reproducibility (or random seeds) now restored
 - fixed bug first seen in release 10.0
- Problem with multi-threaded running
 - large memory consumption problem being worked on
- New data set G4NDL-4.5 required
 - available on Geant4 download page

Particle HP

- The charged particle analogue of the high precision neutron model
 - for p, d, t, α : (α, n) reactions included
 - mostly for E < 20 MeV, but some higher energy data
- Finally in toolkit
 - was promised for more than two years
 - currently database (~Gbytes) is maintained at CIEMAT (Spain), but eventually to be linked to Geant4 web page
- Plan is to merge ParticleHP and NeutronHP into one package
 => ParticleHP
 - code to be released at completion of testing and validation (end of June)

Fritiof Nucleus-nucleus

- Interface to DPMJET II.5 no longer works
 - serious energy non-conservation problems and maybe more
 - also limited to Z < 26
 - compiles and runs, but difficult to maintain Fortran code and interface
- Would like to have native G4 code for high energy nucleusnucleus collisions
 - FTF can now do nucleus-nucleus; try it
 - validate against 1987 data from CERN SPS:
 - 200 GeV/u ³²S on C, Al, S, Cu, Ag, Pb
 - CPU for DPMJET and FTF similar
- FTF looks promising
 - better than DPMJET for light targets

Coming in 2015/2016

User Variation of Model Parameters

- Requested by several user communities
 - most notably for studies of neutrino production targets
- A means of establishing systematic errors for some models
 - Bertini cascade now under study
 - looking at varying nuclear radius, repulsive core radius, etc.
- To be offered on a restricted basis
 - only users working with model developers

Fast Cross Sections

- One of the largest time sinks in Geant4 hadronic models is cross section calculation and look-up
- Hadronic cross section optimization (work of Renci/UNC Chapel Hill)
 - caching cross sections
 - list of particle/material/process "triplets" built for a given application
 - caching ~10 of these is enough to speed things up considerably
 - being tested in Geant4 now
 - surrogate model
 - automatic construction of empirical model (polynomial) of cross section in a given energy range
 - store polynomials for fast access
 - still in development

Radioactive Decay and Photon Evaporation

- Correlated Gamma Emission
 - Currently photon evaporation code may emit multiple gammas during de-excitation, but they are isotropic and not correlated in angle
 - New code (Jason Detwiler) will make use of J^{π} data in photon evaporation database
 - gamma angular distributions will now be correct
- Spontaneous fission is still in the job queue

Neutrino Interactions

- First step: interface of Geant4 to GENIE
 - goal: allow GENIE neutrino generator to use Geant4 hadronic models for fragmentation and final state interactions within nucleus following initial interaction
 - will allow greater variety of models than now available in GENIE
 - planned for end of 2015
- Second step: interface of GENIE to Geant4
 - goal: allow Geant4 to use GENIE's neutrino-nucleus interactions in a Geant4 neutrino process
 - planned for early 2016
- Third step: once neutrino scattering processes are in place, use new Geant4 biasing techniques to do neutrino propagation