Simulations, backgrounds, and uncertainties in PICO-2L

Simulations in PICO-2L

- Background
 - Assays
- ► α,n yields
- Neutron propagation
- Calibration
- ► AmBe
- Rates
- Reactions
- ► Mono-E neutrons
- Generation
- Propagation

Slide 2/33 CAM 2013 Aug 16, 2013

- Background estimates
 - Material assays
 - $\sim \alpha$, n yields and neutron generation
 - Neutron propagation
- Calibration
 - ► AmBe
 - ⊳Rates
 - ▶ Reactions
 - Monoenergetic neutrons
 - ⊳Generation
 - ► Propagation

Background Estimates

Background

Calibrations of

Nuclear Recoils

Assays

in C_3F_8

- ► α,n yields
- Neutron propagation
- Calibration
- ► AmBe
- Rates
- Reactions
- ► Mono-E neutrons
- Generation
- Propagation

Background neutrons produced primarily by (α, n) and spontaneous fission from nearby ²³⁸U and ²³²Th can produce both single and multiple bubble events. We perform a detailed Monte Carlo simulation of the detector to model the neutron backgrounds, predicting 0.9(1.6) single(multiple) bubble events in the entire data set, for an event rate of 0.004(0.006) cts/kg/day, with a total uncertainty of 50%. There were no multiple bubble events observed in the WIMP search data, providing a 90% C.L. upper limit of 0.008 cts/kg/day, consistent with the background model.

arXiv:1503:00008

Slide 3/33 CAM 2013 Aug 16, 2013

Background Sources

• Background

- Assays
- ► α,n yields
- Neutron propagation
- Calibration
- ► AmBe
- Rates
- Reactions
- Mono-E neutrons
- Generation
- Propagation

 Internal radioactivity – 55% of background

- External neutrons 28%
- Radon inside the shield 17%
- Gammas and exotic backgrounds
 Negligible for PICO-2L at SNOLAB.

Slide 4/33 CAM 2013 Aug 16, 2013

Internal Radioactivity

- Background
 - Assays
- ► α,n yields
- Neutron propagation
- Calibration
- ► AmBe
- Rates
- Reactions
- Mono-E neutrons
- Generation
- Propagation

• Measured nearly every component.

OFHC Cu, synthetic silica, UPW assumed clean

- Stainless steel bolts and screws negligible
- LED cables installed before screening. 100 ppb U and Th assumed.
- HDPE and PP shielding tanks assumed 1 ppb U/Th

Slide 5/33 CAM 2013 Aug 16, 2013

Internal Radioactivity

- Background
 - Assays
- ► α,n yields
- Neutron propagation
- Calibration
- ► AmBe
- Rates
- Reactions
- ► Mono-E neutrons
- Generation
- Propagation

Most components measured by GES
 University of Chicago HPGe
 ORTEC GEM-10 in a pre-WWII steel/pb shield.

Slide 6/33 CAM 2013 Aug 16, 2013

SNOLAB used for piezo components

University of Chicago Counter

- Background
 - Assays
- ► α,n yields
- Neutron propagation
- Calibration
- ► AmBe
- Rates
- Reactions
- ► Mono-E neutrons
- Generation
- Propagation

- Dead layer and DAQ deadtime measured using calibrated Ba-133 and Y-88 sources at various distances.
- 6' concrete overburden and μ veto on 5 sides.

Slide 7/33 CAM 2013 Aug 16, 2013

University of Chicago Counter

- Background
 - Assays
- ► α,n yields
- Neutron propagation
- Calibration
- ► AmBe
- Rates
- Reactions
- Mono-E neutrons
- Generation
- Propagation

 No radon purge. Radon variability requires background run immediately before every sample.

Slide 8/33 CAM 2013 Aug 16, 2013

Internal Radioactivity

- Background
 - Assays
- ► α,n yields
- Neutron propagation
- Calibration
- ► AmBe
- Rates
- Reactions
- Mono-E neutrons
- Generation
- Propagation

ICP-MS for U and Th in pressure vessel
Alpha counting and GES of Pb-210 in piezo salts.

D.A. Fustin PhD thesis (2012) Univ of Chicago

Slide 9/33 CAM 2013 Aug 16, 2013

Internal Radioactivity

• Track results w/ Google Drive.

m	coupp4	coupp4litemat ☆ 🖿																
▦	File Edit View Insert Format Data Tools Form Help All changes saved in Drive																	
	ē ro	∽ ₽ \$	% 123 -	Georgia	Ŧ	14 -	B <i>I</i> 5 <u>A</u>	· 🗞 - 🖽	-] - =	- <u>↓</u> - <u>=</u>	Ξ.Ξ.Υ.Σ	Ŧ						
f×	PICO-lite	materials count	tina															
1.6	Δ	в		C	D	F	F	G	н	1	J	к	1	м	N	0	P	0
4		o motorio le			0	-		Ŭ			0	i k	L.	141		Ŭ		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1	FICO-III	100-me materiais counti			Ing Paguinad								(T)					
2				Sensitiv	ity (pph)		11.000			Th			1n-234					
	Tracking			Sensitiv	ity (ppb)	/	0-238			In-232			190% upper	Co 60	V 10		TCD MC	
3	number	Material		11-008	Th-000	Sampled	(ppb)	uncertaint	Ref Source	(ppb)	uncertainty	Ref Source		(mBa/ka)	(mBa/ka)	Dassed 2	required?	Notes
	number	Iviatei lai		0-230	111-232	Sampled	(ppb)	uncertainty	Kei Source	(ppp)	uncertainty	Rei Source	e 0-238)	(шьч/кв)	(шьч/кв)	Fasseur	requirear	2015 line 22 / 7 and hetter than other TI 200 and
4	4	Split Flange		5 43	15 14	Original use	21	5 2	UChicago	1 4	14	UChicado	74	47	0	Passed	Yes	Ph-212 lines
5	6	Plug Weldmer	nt	25.047.03	90,303.17	Original use	31	3 7	UChicago -	0	11	UChicago	- 200	1.7	0	Passed x10		
6	7	Swagelok 6LV	∿-DPHFR	270.87	596.72	2 Original use	er 1	1 5	UChicago –	0	7	UChicago	- 40	3	0	Passed x10		Simulated as a point source at the valve seat.
7	8	Fill Tube		15,040.98	46,314.34	Original use	ə 34	120	UChicago 👻	0	170	UChicago	770	50	0	Passed x10		
8	9	Hydraulic Flui	d	0.13	0.65	No							v			In Queue 🚽		
9	11	1/4-28 hex jan	n nut	561.59	1,566.89	Original use	ei l	0 9	UChicago 👻	0	20	UChicago	- 65	0	20	Passed x10		Measured with 25
10	12	Guiding Rod E	Extension	334.79	997.54	Original use	91	7 3	UChicago –	0	4	UChicago	- 80	0	0	Passed x10		
11	13	Guiding Threa	ided Rod	133.24	371.74	Original use	91	7 3	UChicago -	0	4	UChicago	- 80	0	0	Passed x10		
12	14	Guiding Rod		3,643.68	13,707.35	Original use	91 1	5 4	UChicago -	2	6	UChicago	V	U	0	Passed x10		measured with 26
13	15	Guiding Rod S	Sleeve	2 169 58	4 032 53		. 41	1 60	UChicano	0	50	UChicado	330		0	Passed	r	content
14	15	Guiding Roa c	Flange	378 64	1 100 79	Original use		2 2 6	UChicago -	63	3	UChicago	v 110	0.4	0	Passed x10		50 +/- 40 nnh U from Th-234
15	18	Large Bellows	i iunge	30.88	87.19	Original use	91	7 3	UChicago -	0	4	UChicago	- 80	0	0	Passed	Yes	
16	20	C-Ring 550		3.594.52	6,546.12	Original use	38	0 70	UChicago 👻	230	100	UChicago	740			Passed	,	Counted w/ sample 28
						- U			-				v				7	Counted w/ split flange (#4). Rate assumes all
17	21	1/1 20 hav put		02 50	261.10	Original use		50	UChicago	20	10	UChicago	970			Deeeed	Vac	measured activity is in the nuts, none in split
	21	1/4-20 nex nu	L	93.50	261.10	Original use		5 50	OChicago	20	40	UChicago	- 070			Fassed	Tes	Counted w/ 29. Rate assumes all measured
18	22	1/4-28 x 1-1/4	12-point s	2,703.00	7.976.72	Original use	e 21	15	UChicago	7	19	UChicago	90			Passed x10		activity is in the nuts&bolts.
19	23	1/4-28 x 2-1/2	socket so	53.90	150.40	Original use	e 2.1	5 2	UChicago 👻	1.4	1.4	UChicago	- 74	47	0	Passed x10	Yes	Counted while inserted into split flange (#4).
20	24	1/4-20 x 3/4 s	ocket scre	13,200.59	36,240.40	Original use	ei l	5 4	UChicago -	2	6	UChicago	v .	0	0	Passed x10		measured with 26
21	25	1/4-28 x 7/8 s	ocket scre	1,084,819	3,911,146.	1 Original use	ei l	0 9	UChicago 🚽	0	20	UChicago	- 65	0	20	Passed x10		measured with other hardware
22	26	2" Bellows		1,081.07	2,967.93	Original use	er l	5 4	UChicago 👻	2	6	UChicago	v	0	0	Passed x10		Counted with guide rods & screws
23	27	3M 3290 retro	reflector	76.43	64.33	At UChicag	c 28	0 40	UChicago 👻	1260	140	UChicago	v		36	Failed		
24	28	C-Ring 2393		27.60	61.51	Original use	ei 21	6 6	UChicago –	10	9	UChicago	- 80			Passed 🔻	Yes	Numbers for PTFE coated inconel used
25	29	Bellows Adapt	ter Flange	399 39	1 178 63	Original use	. 4	5 31	UChicago	2	4	UChicado	70	62	0	Passed v10		Counted w/ hardware. If activity is in the hardware, it's 3-5 times weaker
26	30	Garlock Gask	ret internationality e	1 023 48	4 532 96	At FNAI	153	210	UChicago -	3200	400	UChicago	70	02	28000	Failed		naidware, it's 5-5 times weaker
27	31	Jar		0.72	3.09	No	100	2.0		0200	400	connoago	* *		20000	In Queue	~	
28	32	Retroreflector	substrate	44.08	124.42	At UChicag	c I	2.7	UChicago 🚽	6	6	UChicago	- 25	0	0	Passed x10	2	
29	40	Shielding base	e	40.87	125.63	8 No							T			In Queue 🚽	•	
30	41	Base Plate		269.89	972.47	No	0.6	2 0.01	PNNL -	0.95	0.02	PNNL ICP-MS	*			Passed x10		
31	46	Bottom flange	manifold	387.76	1,407.14	At UChicag	IC I	1.3	UChicago 👻	0	2.6	UChicago	- 5	13	4	Passed x10		
32	47	1" Hyd pipe		1,000.00	3,628.93	No							v .			In Queue		
33	48	1/2" NPT plug		4,075.17	8,977.61	No			-				×			In Queue		
							-										-	

Neutron Yields

- Background
 - Assays
- α,n yields
- Neutron propagation
- Calibration
- ► AmBe
- Rates
- Reactions
- ► Mono-E neutrons
- Generation
- Propagation

- α,n yields calculated using modified SOURCES-4C with self-made libraries.
 - Based on JENDL-AN/05 evaluation up to silicon.
 - Tomasello & Kudryavtsev libraries updated with experimental data where available: ^{46,48}Ti, ^{50,52}Cr, Mn, Fe.
- Rate and spectra simulated independently for each material.

Slide 11/33 AARM 2015 May 21, 2015

Neutron Propagation

Background

- Assays
- ► α,n yields
- Neutron propagation
- Calibration
- ► AmBe
- Rates
- Reactions
- ► Mono-E neutrons
- Generation
- Propagation

Slide 12/33 AARM 2015 May 21, 2015

• Using MCNP-Polimi.

- Estimates assume full efficiency above 3.0keV nuclear recoil threshold.
 - Background singles rate approx. independent of threshold.
- 16 geometry iterations
 - Not all simulations use the final geometry.
 - Additional geometry variations to check for uncertainties.

Simulations for PICO-2L Simulation Geometries

• Background

- Assays
- ► α,n yields
- Neutron propagation
- Calibration
 - ► AmBe
 - Rates
 - Reactions
- ► Mono-E neutrons
- Generation
- Propagation

Slide 13/33 AARM 2015 May 21, 2015

As-built conditions

Background

- Assays
- ► α,n yields
- Neutron propagation
- Calibration
- ► AmBe
- Rates
- Reactions
- ► Mono-E neutrons
- Generation
- Propagation

Slide 14/33 CAM 2013 Aug 16, 2013

- Coloured tags, bags, and spreadsheet tracking were attempted to verify that parts on site were screened
 - Only partially successful given lack of coordinated training.
- Final drawings used for simulations
 - Not always complete.
 - Did not accurately reflect as-built conditions.
 - Problems found by having lots of pictures.

Event Rate Uncertainties

• Background

- Assays
- ► α,n yields
- Neutron propagation
- Calibration
- ► AmBe
- Rates
- Reactions
- ► Mono-E neutrons
- Generation
- Propagation

Uncertainties from

- Assay statistics and systematics (10%)
- Simulation statistics and syst. (15%)
- Alpha, n systematics (mat. dependent)
- Material composition and mass
 - Asymmetric uncertainty where (alpha,n) yield varies amongst constituents.

Slide 15/33 AARM 2015 May 21, 2015

Background Event Rate

• Background

- Assays
- ► α,n yields
- Neutron propagation
- Calibration
- ► AmBe
- Rates
- Reactions
- ► Mono-E neutrons
- Generation
- Propagation

Slide 16/33 AARM 2015 May 21, 2015 • Totals per live-year:

- Singles: 4.6 ±0.7 (stat.) +0.9/-2.1 (syst.)
 All: 10.7 ±1.4 (stat.) +2.1/-5.0 (syst.)
- Largest contributors
 - Rock neutrons 1.3 singles ± 50%
 - Retroreflector 1.0 singles
 - Radon in air 0.78 singles
 - Computar lenses 0.62 singles
 - Pressure Vessel: 0.3 singles

Neutron Calibrations

- Background
 - Assays
- ► α,n yields
- Neutron propagation
- Calibration
- ► AmBe
- Rates
- Reactions
- ► Mono-E neutrons
- Generation
- Propagation

Slide 17/33 AARM 2015 May 21, 2015

• Measure Event Rate Simulated Rate

for multiple neutron energy spectra

- Requires absolute calibration of
 - Source rate
 - Geometry and fiducial volume
 - Neutron propagation
 - Recoil cross-section

Simulations for PICO-2L Neutron Calibrations

- Background
 - Assays
- ► α,n yields
- Neutron propagation
- Calibration
- ► AmBe
- Rates
- Reactions
- ► Mono-E neutrons
- Generation
- Propagation

Slide 18/33 AARM 2015 May 21, 2015

AmBe Calibrations

- Background
- ► Assays
- ► α,n yields
- Neutron propagation
- Calibration
- ► AmBe
- Rates
- Reactions
- Mono-E neutrons
- Generation
- Propagation

• SNO calibrated source

- Far from active volume.
 - Needed reduced rate
 - Increases geometric uncertainties

Slide 19/33 AARM 2015 May 21, 2015

AmBe Calibrations

- Background
 - Assays
- ► α,n yields
- Neutron propagation
- Calibration
- ► AmBe
- Rates
- Reactions
- ► Mono-E neutrons
- Generation
- Propagation

Slide 20/33 AARM 2015 May 21, 2015

Independent MCNP and Geant4 simulations

- Cross-checked geometry
- Rate difference between simulations
- Uncertainties

Cross Section Uncertainty ENDF/B-VII.1: F-19(N,TOT)

0.5

 Hydrogen density of mineral oil
 AmBe neutron energy spectrum
 ¹⁹F(n,el) cross-section
 ¹⁹F(n,el)
 ¹⁹F(n,el)
 ¹⁰Coss-section

AmBe Spectrum

- Background
 - Assays
- ► α,n yields
- Neutron propagation
- Calibration
- ► AmBe
- Rates
- Reactions
- ► Mono-E neutrons
- Generation
- Propagation

4 neutron production channels

►
$${}^{9}\text{Be}(\alpha,n_0) {}^{12}\text{C} (Q = 5.702 \text{ MeV})$$

- ► ${}^{9}\text{Be}(\alpha,n_1) {}^{12}\text{C} (Q = 1.263 \text{ MeV})$
- ► ${}^{9}\text{Be}(\alpha, \alpha + n) {}^{8}\text{Be}(Q = -1.664 \text{ MeV})$
- ► ${}^{9}\text{Be}(\alpha, n_2) {}^{12}\text{C} (Q = -1.952 \text{ MeV})$

Slide 21/33 AARM 2015 May 21, 2015

AmBe Calibrations

- Background
 - Assays
- ► α,n yields
- Neutron propagation
- Calibration
- ► AmBe
- Rates
- Reactions
- Mono-E neutrons
- Generation
- Propagation

Uncertainties

- ~30% on recoil rate from MCNP/Geant4 difference.
- S% per step in multiplicity ratio due to ¹⁹F(n,el) cross-section.

Slide 22/33 AARM 2015 May 21, 2015

AmBe Reactions

- Background
 - Assays
- ► α,n yields
- Neutron propagation
- Calibration
- ► AmBe
- Rates
- Reactions
- ► Mono-E neutrons
- Generation
- Propagation

 MCNP-Polimi does not handle 3-body reaction energetics.

- Used ptrac output to tag (n,n+α) and charged particle reactions. Nominally cut via acoustics.
- 2% correction to the simulated rate.
- Bug reported and fixed in next version.

Slide 23/33 AARM 2015 May 21, 2015

Monoenergetic neutron calibrations

- Background
- Assays
- α,n yields
- Neutron propagation
- Calibration
- ► AmBe
- Rates
- Reactions
- Mono-E neutrons
- Generation
- Propagation

 Monoenergetic 61 & 97 keV neutrons at the University of Montreal

► ⁵¹V(p,n) reaction

 Neutron flux measured with He-3 detectors.

Slide 24/33 AARM 2015 May 21, 2015

⁵¹V(p,n) reaction

- Background
 - Assays
 - ► α,n yields
 - Neutron propagation
- Calibration
- ► AmBe
- Rates
- Reactions
- ► Mono-E neutrons
- Generation
- Propagation

Narrow resonances

Uncertain angular distribution

TABLE I. $V^{51}(p,n)$ Cr⁵¹ neutrons: Selected peaks. The figures in the last column represent the coefficient A, of the angular distribution $W(\phi) \sim 1 + A P_2(\cos\phi)$.

Slide 25/33 AARM 2015 May 21, 2015

He-3 Measurements

- Background
- ► Assays
- ► α,n yields
- Neutron propagation
- Calibration
- ► AmBe
- Rates
- Reactions
- Mono-E neutrons
- Generation
- Propagation

 Intercalibration at 0° and 90°

> Precise masses, dimensions, materials.

► Matches MCNP.

Slide 26/33 AARM 2015 May 21, 2015

Neutron propagation

- Background
 - Assays
- ► α,n yields
- Neutron propagation
- Calibration
- ► AmBe
- Rates
- Reactions
- Mono-E neutrons
- Generation
- Propagation

• High sensitivity to neutron crosssection uncertainties.

- Monoenergic neutrons
- Cannot reconstruct full kinematics in a bubble chamber.
 - \triangleright Exception of CIRTE π -beam experiment

Slide 27/33 AARM 2015 May 21, 2015

PICO-0.1 detector

- Background
- ► Assays
- ► α,n yields
- Neutron propagation
- Calibration
 - ► AmBe
 - Rates
 - Reactions
 - Mono-E neutrons
 - Generation
 - Propagation

Slide 28/33 CAM 2013 Aug 16, 2013

40 keV data

- Background
 - Assays
- ► α,n yields
- Neutron propagation
- Calibration
- ► AmBe
- Rates
- Reactions
- Mono-E neutrons
- Generation
- Propagation

Intercalibration at 0° and 90°
 Matches MCNP except at 40 keV.

(n,el) cross-section in 304SS

Slide 29/33 AARM 2015 May 21, 2015

⁹Be(γ ,n) Sources

- Background
 - Assays
- ► α,n yields
- Neutron propagation
- Calibration
- ► AmBe
- Rates
- Reactions
- Mono-E neutrons

Cross-section (mb)

- Generation
- Propagation

1.8 Fujishiro et al. (1982) Other radioisotope measurements Arnold et al. (2012) 1.6 Burda et al. (2010) Barker (2000) Berman et al. (1967) 1.4 1.2 1 Existing measurements 0.8 0.6 **Threshold** 0.4 0.2 0 1.7 1.8 1.9 2.1 2.2 2 Photon Energy (MeV) Gibbons et al. (1959) New ${}^{9}Be(\gamma, n)$ cross-John and Prosser (1962) Snell et al. (1950) Fujishiro et al. (1982) section fit for Árnold et al. (2012) Barker (2000) Fit to radioisotope measurements determining 1.5 Cross-section (mb) source yields Corrected data & new fit 0.5 Threshold 0 2.4 2.6 2.8 1.8 2 2.2 Photon Energy (MeV)

Slide 30/33 AARM 2015 May 21, 2015

Cross-sections

- Background
 - Assays
- ► α,n yields
- Neutron propagation
- Calibration
- ► AmBe
- Rates
- Reactions
- Mono-E neutrons
- Generation
- Propagation

Uncertainty in ¹⁹F resonance strength. ▶97 keV ± 7% 61 keV ± 1.5%

Slide 31/33 CAM 2013 Aug 16, 2013

Cross-sections

- Background
 - Assays
- ► α,n yields
- Neutron propagation
- Calibration
- ► AmBe
- Rates
- Reactions
- Mono-E neutrons
- Generation
- Propagation

- New libraries for MCNP and Geant4 created with R-matrix calculated angular scattering distributions in the Resolved Resonance Region
 - ► PRC **89**, 032801 (2014)

Dipole Term of Angular Scattering Distribution Fluorine-19

Slide 32/33 CAM 2013 Aug 16, 2013

- Develop a radiopurity tracking and change control system.
 - Train engineers, technicians, and detector operators.
- Independently check all critical simulations, and reconcile differences. Typographical errors are common.
- Know where your data is coming from, reverify all calibrations, and use experimental checks where possible.

Slide 33/33 CAM 2013 Aug 16, 2013