Neutron Backgrounds and R&D Plans for Veto and Measurements

Grant#: NSF PHYS-0758120

Dongming Mei
The University of South Dakota

Neutrons Reactions

Neutrons are problematic

- 1. Neutrons from natural radioactivity
 - a) Flux is on the order of 10^{-6} cm⁻²s⁻¹, gamma-ray flux is a few × cm⁻²s⁻¹
 - c) Energy ranges from keV to MeV
 - d) Flux annual modulates
 - e) Must be measured continuously during the course of DUSEL
- 2. Neutrons from muon-induced processes
 - a) Flux is on the order of 10⁻⁹ cm⁻²s⁻¹ in the laboratory hall
 - b) Energy ranges from keV to Gev
 - c) Flux annual modulates
 - d) Flux dependence on the targets
 - e) Very complicated production process
 - f) Very hard to veto
 - g) Large uncertainty on the production processes
 - h) Difficult to simulate correctly
 - i) Must be measured continuously during the lifetime of DUSEL

Measuring neutrons

- 1. Must have n/g discrimination capability
 - a) Scinillator, germanium detector, and TOF
- 2. Must be able to measure high energy neutrons
 - a) Neutron attenuation in lighter elements and TOF
- 3. Must be large enough to measure neutrons
 - a) Big detector or detector array
- 4. Must also measure muons and various showers
 - a) Detector array
- 5. Must also measure the multiplicity
 - a) Gd-doped water Cherenkov detector

A hybrid detector array that consists of liquid scintillators and Gd-doped water

Hybrid Detector Array

11/12/10

Gd-doped water Cherenkov detector

- 1. 0.2 % of Gd-doped concentration
- 2. 46 liters of total liquid volume
- 3. Acrylic tube

Status of the project

- 1. The current NSF funding is being implemented and one scintillator is built. One Gd-doped water Cherenkov detector is being built.
- 2. The renewal NSF funding has been submitted. This proposal will allow us to build 8 more detectors in next three years.
- 3. A major research instrument proposal is being planned to build 252 detectors in total.
- 4. The detector array will be in operation at DUSEL in 2016.