WATCHMAN

WATer CHerenkov Monitoring of Anti-Neutrinos Marc Bergevin, UC Davis

Goal of WATCHMAN

Measure neutrino from low power reactors over large distances

- National Nuclear Security Agency strategic plan 2016 (DOE program): demonstrate remote reactor monitoring capabilities
- Megaton scale detectors are required for remote monitoring of 10 MWt reactors anti-neutrinos over 10² km distances (Water Cherenkov would be ideal)

Inverse beta event rates in a 1 Megaton	Reactor Thermal power (MWt)	Standoff distance (km)	Signal rate (per month)	background (non-reactor, per month)	Detection efficiency	Over- burden (mwe)	3 sigma significance
detector	10	400	1	0.5	50%	2000	1 year

Why water Cherenkov?

- Lower cost, safety and environmental consideration at Megaton scale
- Light propagation properties for a 1 Megaton option:
 - Attenuation length >100 m @ 400 nm [This should be compared to the attenuation length of ~20 meter for LS]
- Reactor anti-neutrino detection has not been demonstrated with water-based Cherenkov detector
 - Gadolinium has been proposed for Super-K and Hyper-K (also LBNE considered it prior to LAr decision)

WATCHMAN Collaboration

A. Bernstein, N. Bowden, S. Dazeley, D. Dobie, M. Sweany	Lawrence Livermore National Laboratory
P. Marleau, W. Hsu, , J. Goldsmith, S. Kiff, D. Reyna, C. Tewell	Sandia National Laboratories*
K. Van Bibber, R. Norman, K. Vetter, C. Roecker, J. Vujic, T. Shokair	UC Berkeley
R. Svoboda, M. Bergevin, M. Askins	UC Davis
J. Learned, S. Dye , J. Maricic	University of Hawaii
M. Vagins	UC Irvine

* Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. SAND Number 2013-1563C

Two-Phase Project Timeline

- Two intermediate phases to evaluate background and feasibility of technology
 - Phase I (funded, content of this talk):
 - Fast neutron assay at varying depth
 - Radionuclide production studies in water target
 - Deployment planned for June 2013 -2014 at KURF.
 - Phase II (proposed):
 - 1 kiloton water-based Cherenkov detector at 1 to 10 km standoff from a 0.1 to 10 GWt reactor.
 - Decision late 2014 to early 2015

Phase I : Measurement at KURF (Kimballton Underground Research Facility)

Background data will be acquired at a range of depths at KURF in 2013-2014.

KURF is an operating underground science facility operated by the Virginia Tech Neutrino Science Center.

Access to multiple depths 100 - 600 m.w.e.

Note on signal and backgrounds

- The main backgrounds to anti-neutrino detection (positron-neutron pair), in the optic that one would like to go to shallow depths (for demonstrators):
 - Radionuclide production is not well measured in water and the production rate vary as a function of muon rate and energy
 - Fast neutrons signature will depend on the depth of detector

Muon related backgrounds at shallow depths

- Characterization of backgrounds to anti-neutrino detection (Pair of events):
 - ⁹Li, other muon cosmogenics producing (β,n) experiment
 - Fast neutrons contamination coincident pair

Muon related backgrounds at shallow depths

- Characterization of backgrounds to anti-neutrino detection (Pair of events):
 - ⁹Li, other muon cosmogenics producing (β,n) experiment
 - Fast neutrons contamination coincident pair
- Do we understand radio-nuclide backgrounds in water detectors?
 - Super-K was not sensitive to neutron [neutron capture on hydrogen (2.2 MeV) was below trigger threshold, these have since been measured with new electronics]
 - SNO was sensitive to neutron capture for muon-related backgrounds, however large depth made these events very rare and easily removable with timing cut

Why fast neutrons are a problem

- A single fast neutron entering the detector can produce a multiplicity of particles
- A single fast neutron may also knock off a gamma creating a prompt-delay pair (bkgd)

Phase I: Fast Neutron detector Multiplier and Recoil Spectrometer (MARS)

Set a flux at different depth and do relative measurements

- Plastic scintillator/Gd doped paint detectors sandwich ~4 tons of lead.
- Direct interaction with scintillator for E < ~100 MeV.
- Neutron multiplication off of the lead for E > ~50 MeV.
- Expect 3000-5000 events per month at 100 m.w.e.

Phase I: Fast Neutron detector (MARS) Deployment

Timeline Starting in june:

- 3 months at ~290 m.w.e.
- 3 months at ~375 m.w.e.
- 3-6 months at ~550 m.w.e.

Phase I: Fast Neutron detector (MARS) Simulation

2nd experiment: Radio-isotope background in water

Experiment to measure cosmogenics in water is underway. Various process can lead to specific radio-isotope production:

2nd experiment: Radio-isotope background in water

Experiment to measure cosmogenics in water is underway, especially β -n production

Isotope	$ au_{1/2}$ (s)	Mode	<i>Q</i> (B.R.)		Isotope	$ au_{1/2}$ (s)	Mode	<i>Q</i> (B.R.)
Carbon					Nitrogen			
⁹ C	0.127	β^+	16.5		¹² N	0.011	β^+	17.3
¹⁵ C	2.45	β^{-}	9.77		¹⁶ N	7.13	β^-	10.4
¹⁶ C	0.747	β^{-}	8.01		17N	4.17	β^-	8.6
		β^- n	(>98.8%)				β^- n	(95.1%)
170	0 1 0 2		(> 30.070)		¹⁸ N	0.624	β^-	13.9
	0.193	β	13.2				β^- n	(14.3%)
		β^- n	(32.3%)	F	Oxygen			
¹⁸ C	0.093	β^{-}	11.8	ŀ	¹³ 0	0.00858	β^+	17.7
		$egin{array}{c} eta^-{\sf n} \end{array}$	(28%)		¹⁴ 0	70.6	β^+	5.14

2nd experiment: Radio-isotope background in water

Experiment to measure cosmogenics in water is underway, especially β -n production

Isotope	$ au_{1/2}$ (s)	Mode	<i>Q</i> (B.R.)	Isotope	$ au_{1/2}$ (s)	Mode	<i>Q</i> (B.R.)		
Helium				Berylliu	Beryllium				
⁸ He	0.119	β^{-}	10.6	¹¹ Be	13.8	β^{-}	11.5		
		β^- n	(16%)			eta^-lpha	(3.1%)		
Lithium			¹² Be	0.0236	β^-	11.7			
⁸ Li	0.838	β^{-}	16.0	¹⁴ Be	0.0043	β^{-}	16.2		
⁹ Li	0.178	β^-	13.6	Boron					
		β^- n	(49.5%)	⁸ B	0.77	β^+	18.0		
¹¹ Li	0.00875	β^{-}	20.6	¹² B	0.0202	β^{-}	13.4		
		β^- n	(85%)	¹³ B	0.0174	β^{-}	13.4		
		β^- 2n	(4.1%)			β^- n	(0.25%)		
		eta^- 2n2 $lpha$	(1.9%)	¹⁴ B	0.0138	β^+	20.6		
		eta^- n $lpha$	(0.9%)	¹⁵ B	0.0105	β^{-}	19.1		

Quick reminder before proceeding:

Gd-doping to detect neutrons

e⁺

Gd

~27µs

- Release of total 8.0 MeV of $\gamma's$ delayed by ${\sim}27\mu s$
- Already proven in liquid scintillator

 $\overline{\mathsf{V}}_{\mathsf{P}}$

 R&D underway for Gadolinium sulfate and filtration for EGADS will be key for the water Cherenkov development (M. Vagins)

The Hyper-Kamiokande Experiment — Detector Design and Physics Potential — arxiv.1109.3262v1

Radio-isotope production Detector

Properties

- 3.5x3.5 meter detector
- 1.5x1.5 meter active inner volume.
- 0.1% Gd doping.
- Depth chosen as to produce a muon rate of 1 Hz within the inner volume of the detector

Timeline

Startining in june:

- One year at 300 m.w.e..

Radio-isotope production Simulation

×10³

Above Ground 1-tonne Detector Response

Quick word on Phase II WATCHMAN – LAND OPTION

IBD event for HQE PMTs (no scintillation)

Entries

- 1 kiloton water-based Cherenkov detector
- 1 to 10 km standoff at 0.1 to 10 GWt reactor
- Light collection choice and detector improvement under review
- Science review this Fall, collaborator welcomed
- Decision late 2014 to early 2015

Sandia National Laboratories

UC Berkeley

UC Davis

University of Hawaii

UC Irvine

Quick word on Phase II WATCHMAN – SEA OPTION

- Off the coast-line from an active reactor (SONGS is still un-operational, but would make a good candidate)
- Next to a submarine (50~80 MWth reactor)

Hanohano style detector

Summary

- Deployment campaign is underway: Data-taking will start in June for both detectors (MARS and radio-nuclide detector)
- Survey of site with muon paddle are currently underway, confirming early estimates of muon rates
- Experiments will provide results on fast neutron production at shallow depth and cosmogenic production in water at shallow depths

EXTRA: Phase II How to improve water-based detectors

- Option I : Light collection improvements and what can be learned from a water R&D perspective (which is wrapping up):
 - High quantum efficiency PMTs
 - Winston cones
 - wavelength shifter plates
 - wavelength shifter films
 - Large Area Picosecond Photo-Detectors
- Option II : Light output improvements
 - Gd water loading R&D
 - Water-based scintillator

EXTRA: Investigating water-based liquid scintillation wbLS

- Ongoing research in mixing oil and water. Surfactant is necessary to emulsify (or aggregate) organic liquid scintillator into the water solvent.
- Surfactant: Linear Alkylbenzene Sulfonic acid (LAS) used
- A stable, first-generation, WbLS with sufficient scintillation light has been developed at BNL
 - Goals/challenges :
 - measure below Cherenkov threshold
 - keep track information
 - Improve energy resolution

Benefits of and progress towards massive water-based liquid scintillator detectors, David E. Jaffe, HYPER-K, 22-23 August 2012

LS WbLS(1) WbLS(2) Water with UV illumination

