### Cosmic Microwave Background

#### 1 Introduction

#### 2 CMB

- 1. Very successful to date
- 2. Only a small part of the information in the CMB has been captured. E.g. WMAP has measured  $\sim l_{\rm max}^2 \simeq 500^2$  modes with S/N > 1. Modes for which simple predictions can be compared with data go out to  $l_{\rm max} \simeq 2000$ . So we've discovered less than a tenth of what's encoded in the CMB.
- 3. Planck will get much of the rest in the T-spectrum
- 4. Polarization: Almost all information in the polarization field has yet to be mined. This is not just doubling the information in T. There are two completely new areas: B-modes and lensing. For B-modes, you get nothing from T. For lensing, you get much better measurements of projected potential using polarization than using T alone.

## 3 Origin of the Universe

- 1. Explain inflation
- 2. Evidence to date can be explained only by inflation or something more revolutionary
- 3. Primordial gravity waves
- 4. They produce B-modes
- 5. Measurement/upper limit on B-modes tells us about physics at GUT-scale
- 6. Non-gaussianity/running also depend on GUT-scale physics. CMBPol will tighten these as well

# 4 Other Fundamental Physics

- 1. Neutrino mass: measures sum of neutrino masses via their effect on projected gravitational potential. Complementary to particle physics experiments which measure mass differences. Oscillation experiments provides two targets: inverted hierarchy predicts  $\sum m_{\nu} > 0.1$  eV; normal hierarchy predicts  $\sum m_{\nu} = 0.05$  eV. Lensed Polarization limits will certainly reach the first target and possibly the second
- 2. Dark Energy: projected potential sensitive to early dark energy

# 5 Astrophysics

- 1. Reionization
- 2. Magnetic Fields