====Definite Integrals==== \int_0^\infty e^{-ax^2}\,\mathrm dx = \frac{1}{2}\frac{\sqrt{\pi}}{a} \int_{-\infty}^\infty e^{-ax^2}\,\mathrm dx = \frac{\sqrt{\pi}}{a} ====Tricks==== Integration By Parts: \int{u}{dv}\,\mathrm = uv-\int{v}{du}