===== Dec 07 (Mon) ===== ** Responsible party: John Galt, Dark Helmet, Esquire ** **To go back to the lecture note list, click [[lec_notes]]**\\ **previous lecture note: [[lec_notes_1204]]**\\ **next lecture note: [[lec_notes_1209]]**\\ **Main class wiki page: [[home]]** ====Chapter 6: Time Indepent Perturbation Theory==== We do it becuase it is a useful tool Shroedinger's equation is the must fundamental tool for QM. We take solutions and eigenstates/eigenvectors to get energy levels ===Non-Degenerate Case=== This is the simplest case single energy->single equation H_0|\psi_n^{(0)}>=E_n^{(0)}|\psi_n^{(0)}> <\psi_m^{(0)}|\psi_n^{(0)}>=\delta_{mn} H=H_0 +\lambda H' H|\psi_n>=E_n|\psi_n> The goal is to seek an approximation of this new Hamiltonian expression. Specifically we want... E_n=E_n^{(0)}+\lambda E_n^{(1)}+\lambda^{2} E_n^{(2)} We define <\psi_n^{(0)}|\psi_n^{(1)}>=<\psi_n^{(0)}|\psi_n^{(2)}>=0 A Fourier expansion can be used to express |\psi_n^{(1)}>=\Sigma C_{mn}|\psi_n^{(0)}> where m≠n Plugging this into the new Hamiltion yields (H_0+\lambda H')(|\psi_n^{(0)}>+\lambda|\psi_n^{(1)}>)=(E_n^{(0)}+\lambda E_n^{(1)})(|\psi_n^{(0)}>+\lambda|\psi_n^(1)>) H_0|\psi_n^{(0)}>+\lambda(H'|\psi_n^{(0)}>+H_0|\psi_n^{(1)}>)=E_n^{(0)}|\psi_n^{(0)}>+\lambda(E_n^{1}|\psi_n^{(0)}>+E_n^{(0)}|\psi_n^{(1)}>) H'|\psi_n^{(0)}>+H_0|\psi_n^{(1)}>=E_n^{(1)}|\psi_n^{(0)}>+E_n^{(0)}|\psi_n^{(1)}> Now using the Fourier expansion expression H'|\psi_n^{(0)}>+\Sigma C_{nm}H_0|\psi_m^{(0)}>=E_n^{(1)}|\psi_n^{(0)}>+E_n^{(0)}\Sigma C_{nm}|\psi_m^{(0)}> H'|\psi_n^{(0)}+\Sigma C_{nm}E_m^{(0)}|\psi_m^{(0)}>=E_n^{(1)}|\psi_n^{(0)}>+E_n^{(0)}\Sigma C_{nm}|\psi_m^{(0)}> Using this, one can find an expression for the expectation of the new Hamiltonian as follows <\psi_n^{(0)|H'|\psi_n^{(0)}>+\Sigma C_{nm}E_m^{(0)}<\psi_n^{(0)}|\psi_m^{(0)}>=E_n^{(1)}<\psi_n^{(0)}|\psi_n^{(0)}>+E_n^{(0)}\Sigma C_{nm}<\psi_n^{(0)}|\psi_m^{(0)}> <\psi_n^{(0)|H'|\psi_n^{(0)}>=E_n^{(1)} Now one can introduce a new parameter l≠n but l can equal m and show <\psi_l^{(0)|H'|\psi_n^{(0)}>+\Sigma C_{nm}E_m^{(0)}<\psi_l^{(0)}|\psi_m^{(0)}>=E_n^{(1)}<\psi_l^{(0)}|\psi_n^{(0)}>+E_n^{(0)}\Sigma C_{nm}<\psi_l^{(0)}|\psi_m^{(0)}> <\psi_l^{(0)|H'|\psi_n^{(0)}>+C_{nl}E_l^{(0)}=C_{nl}E_n^{(0)} C_{nl}=<\psi_l^{(0)|H'|\psi_n^{(0)}>/(E_n^{(0)}-E_l^{(0)}) E_n^{(2)}=\Sigma|<\psi_l^{(0)|H'|\psi_n^{(0)}>|^2/(E_n^{(0)}-E_l^{(0)}) This was all i had for notes as well-Dark Helmet ------------------------------------------ **To go back to the lecture note list, click [[lec_notes]]**\\ **previous lecture note: [[lec_notes_1204]]**\\ **next lecture note: [[lec_notes_1209]]**\\