Cell-free expression: application to networks and synthetic vesicles.

Vincent Noireaux, University of Minnesota UMN, 09 October 09

- information and gene expression
- in vitro elementary gene circuits
- expression in vesicles: protocell system
- diffusion study

Cell-free circuits

AlphaHemolysin-eGFP (cell-free extract encapsulated in a synthetic phospholipid vesicle)

Part 1: gene expression

Simplified view of a cell

- Membrane
- DNA \rightarrow RNA \rightarrow proteins
- Genetics networks
- Replication-cell division
- Evolution

Escherichia coli: 4500 genes Minimal cell: ~ 400 genes

<u>Transcription</u>: DNA \rightarrow RNA

<u>Translation:</u> RNA \rightarrow proteins

Gene network motifs

Alon U. 2007

Alon U. 2007

Synthetic approach to gene expression

in vivo

Elowitz et al - 2002

in silico

in vitro

In vitro approach to information

We use a cell-free approach to information in biology:

- reductive
- constructive
- quantitative approach

applied to:

- (1) elementary gene networks.
- (2) search problem and diffusion in biological medium.
- (3) protocell system.

Part 2: cell-free gene expression Round1.

Cell-free systems (1/2)

- cytoplasmic extract to express genes in vitro:
 - endogenous DNA and mRNA are removed.
 - the extract contains:
 - energy: ATP, GTP.
 - building blocks (nucleotides, amino acids).
 - translation machinery (ribosomes, transfer RNA).
- in vitro coupled transcription/translation in test tube: $DNA \rightarrow mRNA \rightarrow proteins$

Cell-free systems (2/2)

advantages:

- reductive constructive quantitative.
- no endogenous expression activity.
- work with toxic genes is easier.

disadvantages:

- transcription limited to bacteriophage RNAP T7, T3, SP6.
- no control of mRNA and protein degradation.
- expression not as powerful as in vivo.

Batch mode reaction

in a 1.5ml tube at room temperature 10µl extract: + RNA Polymerase (protein) + genes (plasmids DNA)

- reporters: eGFP, firefly luciferase
- detection: microscope, photo multiplier tube, platereader
- 1nM ~ 1 molecule per μ m³

Rate of protein synthesis

 $V(t) = V_0 e^{-b\frac{[ATP(t=0)]}{[ATP(t)]}}$

The real parameter for energy is the energy charge (Atkinson D.E. 60s)

Energy charge:
$$E_c = \frac{[ATP] + \frac{1}{2}[ADP]}{[ATP] + [ADP] + [AMP]}$$

FIGURE 1: Generalized response to the energy charge of enzymes involved in regulation of ATP-regenerating (R) and ATP-utilizing (U) sequences.

Batch mode limitations

• energy charge

- finite resources (no feeding)
- pH variations
- amino acids degradations
- byproducts accumulation

Conclusion:

• in batch mode, elementary genetic circuits of 3-4 well-known genes can be reconstituted.

limitation: transcription is too limited.

Noireaux, Bar-Ziv, Libchaber, PNAS, 2003.

Next steps:

• prepare a new type of extract: the complete transcription system from E. coli.

• add control mechanisms of mRNA degradation and protein degradation.

Part 3: cell-free gene expression Round2.

Jonghyeon Shin.

Optimization of a new CFE

Objectives:

- E. coli RNAP, sigma factors
 → choice of promoter/operator modules.
- protein production: at least a few micromolar.
- degradation of messengers.
- degradation of proteins.

Optimization of a new CFE

- cell-free extract prepared from E. coli, the endogenous E. coli RNAP and sigma factor70 are used to express all the other genes.
- the 6 other sigma factors are functional.
 S32, S28 > S38, S24 > S54, S19
- control of mRNA degradation rate is performed with MazF toxin. mRNA lifetime can be adjusted from 25 min to 0min.
- protein degradation is performed with CIpXP complex.
 Protein lifetime depends on the tag.

E. Coli RNAP – sigma70

(endogenous activity)

P70: sigma70 promoter

SDS PAGE 12% 0.6mg/ml of fLuc in test tube (no feeding)

2-stages cascade for sigma28

2-stages cascade for sigma32

3-stages cascade for sigma24

3-stages cascade for sigma19

3-stages cascade for sigma38

3-stage cascades for Ntrc-sigma54

T7 and T3 RNAP

mRNA degradation

- MazF: toxin, specific mRNA cleavage.
- MazE: antitoxin, binds to MazF.

mRNA degradation rate tuning

MazEF specific messengers degradation

Specific protein degradation

ClpXP degradation complex E.coli

(Gottesman, 2003)

ClpXP tag ClpXP degradation complex E.coli

(Flynn et al. - 2003)

Coupled mRNA/protein degradation

Conclusion:

• in batch mode, elementary genetic circuits of

• E. coli cell-free system with 9 different types of RNA polymerases, degradation of mRNA and proteins can be adjusted.

Part 4: application to gene networks

Jonghyeon Shin.

Parameters: gene concentration, mRNA degradation, protein degradation,

Auto-regulation system

(Transcriptional negative feedback loop)

Model I: high cooperativity

Ref) B.C.Goodwin. Adv. Enzyme Regul. 3, 425-439 (1965)

Model II: low cooperativity

$$\frac{d[P]}{dt} = k_2[M] + k_4[R] - k_3[P]^2 - \frac{h_2[CX][P]}{c+[P]}$$

 $\frac{d[R]}{dt} = k_3[P]^2 - k_4[R] - \frac{h_3[CX][R]}{d+[R]}$

Model III: stochastic model

- Ref) A.J.Mckane and co-workers.
- Journal of Statistical Physics **128**, 165-191 (2007)

48

Part 5: application to the DNA-binding protein search problem.

Jonghyeon Shin and Nadezda Monina.

The problem:

how a TF finds its target sequence (30bp) among 510⁶ bp in a few seconds?

 \rightarrow 1D and 3D diffusion problem.

Kolesov et al - 2007

Model prediction:

genetics under construction

Part 6: application to diffusion from a source point.

Jonghyeon Shin Nadezda Monina Jonathan Gapp.

Anomalous diffusion

Diffusion from a local source

$$\frac{d[M]}{dt} = \frac{D_1}{r} \partial_r (r \partial_r [M]) + S_1 \delta(r - r_0)$$

$$\underbrace{\frac{d[P]}{dt}}_{dt} = \frac{D_2}{r} \partial_r (r \partial_r [P]) + k[M]$$

$$\underbrace{\frac{d[M]}{dt}}_{dt} = \frac{D_1}{r} \partial_r (r \partial_r [M]) + S_1 \delta(r - r_0) - \frac{h_1 [MF][M]}{1 + [M]}$$

$$\underbrace{\frac{d[P]}{dt}}_{dt} = \frac{D_2}{r} \partial_r (r \partial_r [P]) + k[M] - \frac{h_2 [CX][P]}{1 + [P]}$$

mRNA and protein gradient profile of diffusion motion

Part 7: application a protocell system.

Jonghyeon Shin Nadezda Monina.

Continuous cell-free expression (in vitro coupled transcription-translation)

(RTS: Rapid Translation System, E. coli)

Spirin A. S. et al, 1988.

Continuous expression

100µm

Encapsulation in synthetic vesicles

Conditions/limitations to encapsulate a cellfree extract in phospholipids vesicles:

- CFE is a very dense solution.
- temperature range < 40°C.
- fragile system (vortex/freeze-thaw)
- phospholipids solvents are toxic.
- osmotic pressure balance.

Encapsulation in synthetic vesicles

Noireaux - libchaber, 2004.

Pautot et al., 2004. ⁶⁰

Expression of eGFP

Conclusion:

- in batch mode, elementary genetic circuits of
- E. coli cell-free system with 9 different types of
- cell-free extracts can be encapsulated in synthetic phospholipid vesicles.

The method is reproducible with fluctuations.

Osmotic pressure is a serious limitation.

Similar work:

FEBS 28879

FEBS Letters 576 (2004) 387-390

Expression of a cascading genetic network within liposomes

Keitaro Ishikawa^{a,1}, Kanetomo Sato^{a,1}, Yasufumi Shima^a, Itaru Urabe^a, Tetsuya Yomo^{a,b,c,d,e,*}

Continuous CFE in phospholipids vesicles

Conditions:

- CFE has no integral membrane protein insertion mechanisms.
- selective permeability, molecular mass cutoff below 10 kDa, above 1 kDa.
- better if established by expression inside the vesicle.

Membrane selective permeability

Alpha Hemolysin

- toxin Staph. Aureus
- soluble monomer
- membrane heptamer
- channel of 1.4nm: 2-3kD

BSA-rhodamine: 60 kDa Fluorescein-UTP: 1 kDa

BSA RITC

Fluorescein UTP

Long-lived bioreactor

Conclusion:

- in batch mode, elementary genetic circuits of
- E. coli cell-free system with 9 different types of
- cell-free extracts can be encapsulated in synthetic

• continuous cell-free expression in the vesicles can be carried out with the internal expression of the toxin alpha-hemolysin.

Noireaux and Libchaber, PNAS, 2004.

Block copolymer vesicles (work of Nadezda Monina)

- Vesicles formed with:
- phospholipids only (2-3nm thickness)
- block copolymer only (20nm thickness)
- mixture of phospholipids and block copolymer
- inside vesicles, expression of AH-eGFP

Phospholipids/copolymer vesicles

(work of Nadezda Monina)

3 hours

6 hours

<u>Lab</u>

Jonghyeon Shin. Nadezda Monina. Jonathan Gapp.

<u>Collaborators</u> (block copolymer) Frank Bates, University of Minnesota. Kevin Davis, University of Minnesota.