
Short Problems

1. A smooth rope of length L and mass m is placed above a hole in a table. One end of
the rope falls through the hole at t = 0, pulling steadily on the remainder of the rope.
Find the velocity of the rope as a function of the distance to the end of the rope, x.
Ignore friction of the rope as it unwinds. Then find the acceleration of the falling rope
and the mechanical energy lost from the rope as the end of the rope leaves the table.
Note that the rope length is less than the height of the table.

2. If an impulse is delivered to the end of a uniform rod of length l, lying on a frictionless
plane, how far will it travel while making one revolution? The impulse is in the plane
of the table and perpendicular to the rod.

3. A time-independent magnetic field is given by B = 2xyb̂i + y2âj.

(a) What is the relationship between the constants a and b?

(b) Determine the steady current density J that gives rise to this field.

4. A set of four point charges, q1, q2, q3, and q4, are arranged collinearly along the z-axis
at z1 = 0, z2 = a, z3 = 2a, and z4 = 4a, respectively and the resulting electric field at
a distant point r (r � a) decays faster than 1/r3. Determine the values of q1 and q4

when q2 = +2 and q3 = +4. Units for all charges are Coulombs.

5. The Lyman-α transition in atomic hydrogen has a wavelength λ = 121.5 nm, and a
transition rate of 0.6× 109 sec−1. Estimate the minimum value of ∆λ/λ.



6. Let n be the number of molecules in one cm3 of air in the room you are sitting in right
now. Estimate (in order of magnitude) the standard deviation of n from its average
value.

7. The electron in a hydrogen atom is in a state described by the following superposition
of normalized energy eigenstates u,

Ψ(r, θ, φ) = [3u100 + Au211 − 2u21−1 + 3u321]/5

where the subscripts represent the quantum numbers {n, l,ml}.
(a) Calculate A > 0 such that the wave function is normalized.

(b) Find the expectation value of the energy in this state, in terms of the ground state
energy of hydrogen E1.

(c) Find the expectation values of L2 and Lz in this state.

8. Two moles of argon (considered an ideal gas) are expanded in a process that doubles
both its volume and pressure. Find the amount by which the entropy of the gas changes
as result of this process in J/K.

9. The magnetic moment per atom in a solid has magnitude µ = 10−23 J/T. What
magnetic field, in tesla, must be applied at T = 77 K if twice as many atoms are to
have their magnetic moments aligned parallel to the field as there are antiparallel?

10. A pion at rest in the lab frame decays into a muon and a neutrino (π → µ + ν).
Assuming that the neutrino mass can be neglected in comparison to the masses, mπ

and mµ, of the pion and muon, show that the speed v of the muon in the lab frame is
given by
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11. A rock is found to contain 4.20 mg of 238U and 2.00 mg of 206Pb. Assume that the rock
contained no lead at the time of its formation, so that all the 206Pb now present is due
to the decay of the uranium originally present in the rock. Find the age of the rock
given that the half-life of 238U is 4.47 ×109 yr. The decay times of all intermediate
elements are negligibly short and ignore any differences in the binding energies.



12. The applied AC voltage in the circuit is given by V (t) = V0 sin ωt, with a frequency
fixed at ω = 1/(LC)1/2. Determine the steady state amplitude and phase of the current
through the resistor R. Express your answer in terms of the amplitude V0 of the applied
voltage and the other circuit parameters.



Long Problems

1. A particle of mass m, is constrained to move without friction on a circular wire of radius
R rotating with constant angular frequency ω about a vertical diameter. Gravity can
not be neglected.
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for small !. The Lagrange equation for ! gives 
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which is the frequency of small rotational oscillations about the vertical through the center of 
the hoop and is the same as that for a simple pendulum of length ". 
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From the figure, we can easily write down the Lagrangian for this system. 
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The resulting equation of motion for ! is 
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The equilibrium positions are found by finding the values of ! for which 
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Note first that 0 and . are equilibrium, and a third is defined by the condition 
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To investigate the stability of each of these, expand using 0/ ! !# '  
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For 0! .# , we have 
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indicating that it is unstable. For 0 0! # , we have 
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which is stable if 2 g R$ 0  and unstable if 2 g R$ 1 . When stable, the frequency of small 

oscillations is 2 g R$ ' . For the final candidate, 
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with a frequency of oscillations of % &22 g R$ $' , when it exists. Defining a critical frequency 
2
c g R$ 2 , we have a stable equilibrium at 0 0! #  when c$ $0 , and a stable equilibrium at 
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To construct the phase diagram, we need the Hamiltonian 
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which is not the total energy in this case. A convenient parameter that describes the trajectory 
for a particular value of H is 
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so that we’ll end up plotting 
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for a particular value of $ and for various values of K. The results for c$ $0  are shown in 
figure (b), and those for c$ $1  are shown in figure (c). Note how the origin turns from an 
attractor into a separatrix as $ increases through c$ . As such, the system could exhibit chaotic 
behavior in the presence of damping. 

 

(a) Write down the Lagrangian for the system and the equations of motion.

(b) Find the equilibrium position(s) of the particle and determine whether this position
is stable.

(c) Calculate the frequency of small oscillations about any stable points.

2. The general solution of the Laplace’s equation for an electro-static problem having
azimuthal symmetry can be written as

V (r, θ) =
∞∑
l=0

(Alr
l + Bl/r

l+1)Pl(cos θ).

Now consider the following problem. A solid spherical conductor of radius R having
charge Q is placed in an otherwise uniform electric field E = E0ẑ.

(a) Qualitatively describe the electric field inside and outside of the sphere.

(b) Solve the problem and find the electric potential in the region outside the sphere.



3. Consider the transmission of a beam of particles of mass m and momentum p = h̄k, in
one dimension, incident on a rectangular potential barrier of height V0 and extending
from x = 0 to x = L, in the special case that the energy E of the incident particles is
exactly equal to the barrier height V0.

(a) Calculate the transmission coefficients T and R.

(b) Check some properties of your answers in (a): is probability conserved? Do T and
R have the expected limiting values for L very large or very small?

(c) For what values of the de Broglie wavelength of the particles is the transmitted
fraction equal to 1/2?

4. Consider a one-dimensional infinite array of points labeled by an index n and separated
by a fixed unit distance. At each point there is an identical very deep and narrow
potential well. Let |n〉 denote an eigenstate of a single well, with energy E.

(a) Argue that if the wells are so narrow that the different sites can be considered
uncoupled, then |n〉 is an eigenstate of the total Hamiltonian, H, with eigenvalue, E.
What is its degeneracy? Then show that the state |k〉 defined as:

|k〉 =
∞∑

n=−∞
eink|n〉

with −π < k < π, is an eigenstate of both H and of the translation operator, T defined
as T |n〉 = |n + 1〉. Find the respective eigenvalues.

(b) Assume now that neighboring sites are weakly coupled so that the total Hamiltonian
can now be written as

H =
∞∑

n=−∞
[|n〉E〈n| − |n + 1〉D〈n| − |n〉D〈n + 1|]

where the coupling parameter D is real and we assume that 〈n|n′〉 = δn,n′ . Show that
|n〉 is no longer an eigenstate of H but that |k〉 still is. Find the eigenvalue.



5. Two monatomic ideal gases, each occupying a volume V = 1.0 m3, are separated
by a removeable insulating partition. They have different temperatures T1 = 350 K
and T2 = 450 K, and different pressures p1 = 103 N/m2 and p2 = 5 × 103 N/m2.
The partition is removed, and the gases are allowed to mix while remaining thermally
isolated from the outside.

(a) What are the final temperature Tf (in K) and pressure pf (in N/m2)?

(b) What is the net change in entropy due to mixing (in J/K)?

6. A rocket passes Earth at a speed v = 0.6c. When a clock on the rocket says that one
hour has elapsed since passing, the rocket sends a light signal back to Earth.

(a) Suppose that the Earth and rocket clocks were synchronized to zero at the time of
passing. According to the Earth clocks, when was the signal sent?

(b) According to the Earth clocks, when did the signal arrive back on Earth?

(c) According to the rocket clocks, how long after the rocket passed did the signal arrive
back on Earth?


