
GWE Spring 2010 - Short Problems

1: Consider a thin uniform and rigid rod of mass m and length L. A
small ball of mass M is attached to one end of the rod. The other end
of the rod is suspended from the ceiling and the system is free to oscillate
about the suspension point without friction. Compute the period of the small
oscillations (in a plane) of this system. Verify that you obtain the expected
result when M ≫ m.

2: Consider a semi-infinite one dimensional potential well. The potential
is infinite at x = 0, it is zero for 0 < x < a, and it has the finite value V0 > 0
for all x > a. Compute the minimum value of a for which such a potential
can confine a particle of mass m.

3: The electron has mass me = 0.511 MeV/c2. The top quark has mass
mt = 173 GeV/c2. A machine produces a beam of electrons, of energy E1

each. A second machine produces a beam of positrons, of energy E2 each.
The two beams are made to collide head on. A total amount of energy can
be given to the electrons and positrons beams, in whatever ratio; namely
E1 = xE, E2 = (1 − x)E . (i) For any value of x, compute the threshold
energy E that allows the production of pairs of real top and anti-top quarks
when one electron collides with a positron (you may disregard me when
compared to mt). (ii) Which choice of x gives the smallest value of E ?
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GWE Spring 2010 - Long Problems

1: Two identical objects A and B, of mass m each, are connected by a
spring, of spring constant k. At t = 0 the two objects are at rest, and the
spring is in its equilibrium position. For t > 0, the object A is subject to an
external force Fext = F cos (ω t) , with F and ω constant, as shown in Figure
1. Compute the motion of the object B for any t ≥ 0. Neglect all friction.

k
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Figure 1: Long problem 1

2: The neutron has the magnetic dipole moment

~µ = γ ~S (1)

where γ is a constant, and ~S is the spin of the neutron.
A nonrelativistic neutron with momentum ~k is moving in a uniform and

constant magnetic field. The interaction between the neutron magnetic
dipole moment and the magnetic field gives a term in the hamiltonian Ĥ
of this system. (i) Write down the complete hamiltonian Ĥ .

(ii) Assume that the magnetic field is ~B = (0, 0, Bz). What are the
possible energies for the neutron? What are the corresponding normalized
wave functions? (to get the normalization, require that there is a probability
one that the neutron is at some place in a large volume L3).

(iii) Answer the same questions as in part (ii), in the case of a magnetic

field ~B = (Bx, 0, Bz) ≡ | ~B| (sin θ, 0, cos θ).
(iv) Assume now that Bx is very small, and can be treated as a pertur-

bation on the problem solved at point (ii), where Bx was taken to vanish.
Starting from the unperturbed solutions obtained in (ii), compute the pos-
sible energies of the neutron to first order in Bx. Compare with the exact
energies obtained in (iii).
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3: Let Z1 (m) be the partition function of a single (quantum) particle of
mass m in a volume L3, at the temperature T .

(i) Consider a system of two such particles, assuming that they do not
interact. Denote by Z2,dist (m) the partition function of the system assuming
that the two particles are distinguishable. Express this quantity in terms of
Z1 (m).

(ii) Assume now that the two particles are indistinguishable spin zero
bosons. Denote by Z2,bose (m) the partition function for this system. Express
this quantity in terms of Z1 (m) and Z1 (m/2).

(iii) Comparing the cases (i) and (ii), calculate (to lowest order in the
quantum effects) the correction to the expectation value of the energy of the
two particle system due to Bose statistics. In which regime is the correction
negligible?

4: Consider a system of two particles, with identical masses, orbiting in a
circle around their center of mass. (i) Show that the gravitational potential
energy of the system is −2 times the total kinetic energy.

(ii) This relation is true, on average, for any system of particles held
together by their mutual gravitational attraction: Ūpotential = −2 Ūkinetic,
where Ū ’s are the total amount of potential and kinetic energies, averaged
over some sufficiently long time. Suppose that you add a small amount of
energy to such system, and then you wait until it equilibrates. Will the
particles in the system, on average, move faster, or more slowly? Explain.

(iii) Compute the potential energy for a uniform spherical distribution of
particles of radius R and total mass M .

(iv) Assume that a star can be modeled by an ideal gas of particles obey-
ing classical statistics, at the same temperature T , which interact among
themselves only gravitationally. Estimate the temperature of a star of mass
M = 2 × 1030 Kg and radius R = 7 × 108 m. Assume for simplicity that the
star contains only protons and electrons.
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5: Consider a uniform infinitely long cylindrical wire, of cross section area
A, with a current I flowing through it. Consider a charged object, of charge
q > 0, moving parallel to the wire, with speed v. The object is outside the
wire, at the distance d from it (d ≫

√
A). The wire is neutral, and the object

moves in the direction opposite to the flow of the current in the wire.
(i) Compute the magnitude and direction of the magnetic force ~F acting

on the charged object.
(ii) Assume the following idealized situation for the wire: the wire is

made of only protons and electrons, uniformly distributed within it. The
proton and electrons have the same number density n (n has dimension of
inverse volume). The protons are at rest, while all the electrons move with
the same velocity ~v. Assume that this velocity is equal (both in magnitude
and direction) to that of the outside object. Express the current I in terms
of v (and of any other relevant parameter), and insert this expression in the
formula for the magnetic force computed in (i).

All the above statements are made by an observer O at rest with respect
to the wire. Consider now the same situation in the rest-frame of the outside
charged object.

(iii) Does the object experience a magnetic force in this frame?
(iv) Compute the number densities of protons (n′

+
) and electrons (n′

−
)

inside the wire in this frame (hint 1: the electric charge of any individual
particle is the same in both frames; hint 2: notice that, due to the symmetry
of the problem, there is a simple relation between the ratio n′

+
/n and the

ratio n′

−
/n).

(v) Compute the linear charge density of the wire in this frame (charge

per unit length along the wire). Compute the force ~F ′ acting on the outside
object in this frame.

(vi) Show that the resulting ratio ~F ′/~F is only function of the γ factor
between the two frames, and of no other parameters. Show that this result
is the one you would have expected, given that ~F = ∆~p/∆t, ~F ′ = ∆~p ′/∆t′,
and how ∆~p and ∆t are related to ∆~p ′ and ∆t′.
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6: A particle of mass m is confined to slide on the surface of an “upside
down” cone with semi-angle α, as shown in Figure 2, and is subject to the
constant gravitational field of the Earth surface. The axis of the cone is on
the z−axis. Neglect any form of friction for points (i) and (ii).

(i) Write down the Lagrangian for this particle, using the coordinates r
and θ, defined by x = r cos θ and y = r sin θ (notice that r and θ completely
specify the position of the particle on the surface of the cone). Write down
the Euler-Lagrange equations, obtained from this Lagrangian, that describe
the motion of the particle.

(ii) For appropriate speed |~v|, the particle can move on a horizontal - and
therefore circular - trajectory with z = z̄ = constant. Write down the relation
between z̄ and the speed. Write down the total energy for the particle in this
motion.

(iii) For this part only, assume that the cone is filled by some viscous

medium, so that the particle is subject to a dragging force ~Fdrag = − b~v,
where b is constant and ~v is the velocity of the particle. Assuming that the
particle is initially (at t = 0) on a circular horizontal orbit, with height z̄0,
and that the effect of the drag is small, so that the orbits of the particle
can be approximated as circular at all times (with a very slowly decreasing
radius, due to the drag), compute the time evolution of the height of the
particle z̄ (t).
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Figure 2: Long problem 6
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4: A very long linear solenoid is made of n circular loops per unit length.
The area of each loop is A. The current in this solenoid is increased linearly
with time, I = α t , where α is a constant. (i) What is the magnetic field
inside this solenoid?

The solenoid is placed perpendicularly to a planar circuit, as shown in
Figure 1 (the solenoid extends both inside and outside the page, for a distance
much greater than the dimensions of the circuit; the arrows on the figure show
the direction of the current in the loops of the solenoid). The circuit shown
in the figure consists of two resistors, of resistances R1 and R2, and two
voltmeters. The internal resistances of the two voltmeters are much greater
than R1 and R2. (ii) What are the magnitudes of the potential differences
V1 and V2 measured by the two voltmeters?

2
R solenoid1 R 2V1 V

Figure 1: Short problem 4

5: Consider two identical and coaxial superconducting loops. Each loop
has self-inductance L. Initially, the two loops are very far apart from each
other, and a current I flows in each of them; the currents in the two loops
have the same direction. Starting from this initial configuration, the two
loops are then “translated” one on the top of the other, and superimposed
(you can assume that they do not touch, although their distance becomes
negligible). What is the final current in each of them? What are the initial
and final energies of the system?

2



6: Two parallel perfectly black planes are in a vacuum, and are kept at
constant and different temperatures T1 and T2. Denote by Φ the heat flux
between these two planes. If a third perfectly black plane is inserted between
these two planes, the system reaches a new steady state, for which the flux
between the two external plates is Φ′ 6= Φ. Compute the ratio Φ′/Φ.

7: A nonrelativistic particle of mass m and electric charge q is in the
ground state of a one-dimensional simple harmonic oscillator potential V (x) =
mω2 x2/2. Recall that the normalized wavefunction for this state is

ψ =
(

mω

πh̄

)1/4

exp

(

−
mω x2

2h̄

)

(1)

At some moment, a uniform electric field in the x direction is switched on
very quickly (i.e., on a timescale which can be regarded as instantaneous for
this problem), and is then kept constant. (i) Show that the new (i.e., with
the electric field switched on) potential to which the particle is subject is of
the simple harmonic oscillator type. (ii) Compute the probability that the
particle is found in the ground state of this new potential.

8: The latent heat of melting for ordinary ice is 334 J/g. Use this and
your own experience on how the volumes of ice and water differ to determine
the sign and estimate the slope of the melting curve for water in the p− T
(pressure and temperature) plane.

9: An engine with 1 mol of an ideal gas starts at V1 = 26.9 liters and
performs a cycle consisting of four steps:

1. Heating at constant pressure to twice its initial volume, V2 = 2 V1

2. Isothermal expansion at T2 to V3 = 3 V1

3. Cooling at constant volume to T1 = 250 K

4. Isothermal compression to its original volume V1

Assume that the molar heat capacity at constant volume for this gas is CV =
21 J/K. (i) Calculate the P, V, T (pressure, volume, temperature) points,
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and draw the engine cycle on a P-V diagram. (ii) Determine the efficiency
of this engine.

10: A particle of mass M is initially moving along the x−axis, with
constant speed v (as measured in the laboratory frame), which can vary
from 0 to near the speed of light. This particle decays into two identical
particles of mass m, with isotropic probability in its rest frame. In the
following, unprimed quantities are in the laboratory frame, while primed
quantities are in the rest frame of the initial particle. Choose the x and x′

axis of these two frames to coincide. Denote by ~p the momentum of one
of the decay products. Choose the axes such that pz = p′z = 0. Denote
by θ the angle in the laboratory frame between the x−axis and the velocity
of this decay product (θ = 0 if the decay product moves in the direction
of the initial particle). The corresponding angle θ′ in the rest frame of the
initial particle is shown in Figure 2. (i) For a given θ′, compute p′x, p

′

y, px, py,
and determine the relation between θ and θ′. (ii) Consider a beam of many
such initial particles, all moving along the same straight line with velocity
v. Consider the value of v for which, in the laboratory frame, half of the
decay products are emitted inside a cone forming an angle θ ≤ θ0 with the
direction of the initial beam. Find the relation between θ0 and v, as v varies
from 0 to the speed of light.

θ
rest frame
initial particle x

y

p

Figure 2: Short problem 10
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11: A cook has a spherically shaped soup spoon. On looking into the
concave side he sees his inverted image 4 cm from the bottom of the spoon
(see Figure 3). Without changing his distance to the spoon, he turns it over,
and sees an erect image of himself 3 cm from the bottom of the spoon. What
is the radius of curvature of the spoon?

bottom

Figure 3: Short problem 11

12: In one day in 1987, the IMB detector observed 8 neutrino interactions.
The normal background interaction rate in the detector was two a day. (i)
What is the probability of eight background events being detected in one
day? (ii) In fact, all those neutrinos occurred in a 10 second period. What is
the probability that all those events were due to a background fluctuation?
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