
Graduate Written Examination
Spring 2014 – Part I

Thursday, January 16th, 2014 – 9:00am to 1:00pm

University of Minnesota
School of Physics and Astronomy

Examination Instructions
Part 1 of this exam consists of 10 problems of equal weight. You will be graded on all 10
problems. For each problem provide as complete a solution as you can.

This is a closed-book examination. You may use a calculator. A list of some physical con-
stants and properties that you may require is included. Please take a moment to review
its contents before starting the examination.

Please put your assigned CODE NUMBER, not your name or student ID, in the
UPPER RIGHT-HAND CORNER of each piece of paper that you submit, along with
the relevant PROBLEM NUMBER in the UPPER LEFT-HAND CORNER.

BEGIN EACH PROBLEM ON A FRESH SHEET OF PAPER, so that no sheet
contains work for more than one problem.

USE ONLY ONE SIDE of the paper; if you require more than one sheet, be sure to
indicate, “page 1”, “page 2”, etc., under the problem number already entered on the sheet.

Once completed, all your work should be put in the manila envelope provided, IN
ORDER of the problem numbers
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Constants Symbols Values

Speed of light in vacuum c 3.00× 108 m/s

Elementary charge e 1.60× 10−19 C

Electron rest mass me 9.11× 10−31 kg

Electron rest mass energy mec
2 0.511 MeV

Permeability constant µo 1.26× 10−6 H/m

Permeability constant /4π µo/4π 10−7 H/m

Vacuum Dielectric Constant 1/4πε0 8.99× 109 N m2/C2

Proton rest mass mp 1.67× 10−27 kg

Proton rest mass energy mpc
2 938 MeV

Neutron rest mass mn 1.68× 10−27 kg

Neutron rest mass energy mnc
2 940 MeV

Planck constant h 6.63× 10−34 J·s
Gravitational constant G 6.67× 10−11 m3/s2·kg

Molar gas constant R 8.31 J/mol·K
Avogadro constant NA 6.02× 1023 /mol

Boltzmann constant kB 1.38× 10−23 J/K

Molar volume of ideal gas at STP Vm 2.24× 10−2 m3/mol

Earth radius 6.37× 106 m

Earth-Sun distance 1.50× 1011 m

Stirling’s Approximation ln(N !) = N ln(N)−N+(small corrections)

cosα + cos β = 2 cos[(α + β)/2] cos[(α− β)/2]



Problem 1

Consider the one-dimensional motion at positive displacement x of a particle subject to a
force F = − b1

x3 where b1 is a positive constant.

1. Find the escape velocity from position x0.

2. Suppose the force was F = − b2
x
, (b2 is also positive). Show that the escape velocity is

infinite.

Problem 2

A classical particle of mass m moves in a closed orbit in the gravitational field of a mass
M >> m; M is at the origin and the potential energy is V = −k/r. Besides energy and
angular momentum there is another conserved quantity, the Laplace-Runge-Lenz vector A

A = p× L− mk

r
r,

where p, r and L denote the linear momentum, position, and angular momentum of the
particle, respectively.

1. In one or two lines argue why A is in the plane of the orbit.

2. The magnitude of the vector A is related to the eccentricity ε of the orbit. Recalling
that when the origin coincides with one of the foci the equation of an ellipse can be
written as

1

r
= C(1 + ε cos θ),

where θ is the azimuthal angle measured relative to A (A·r= Ar cos θ) and C is a
constant, relate the magnitude A to the eccentricity ε, the mass m, and k.

Problem 3

Find the magnetic flux through a square loop due to a current I in a long straight wire. The
loop is coplanar with the wire and has two sides parallel to it. The loop has side length a and
its side nearest to the wire is a distance b from the wire.

Problem 4

A system is described by the wave function Ψ = Acos2φ, where A is a normalization constant
and φ is the azimuthal angle. You measure the angular momentum of this system along the z
axis. Compute which results you can obtain from such a measurement, and their probabilities.



Problem 5

Derive the average momentum 〈 p̂ 〉 for a packet with a normalizable wave function of the form

Ψ(x) = C φ(x) exp(ikx) ,

where C is a normalization constant and φ(x) is a real function.

Problem 6

Galaxy A moves away from our galaxy at a speed of 0.6c. Galaxy B moves away at 0.7c with a
trajectory that is 45 degrees to A. Write down the transformation of space and time differential
coordinates (∆t, ∆x,∆y) between two objects moving at constant velocity v0 relative to each
other (orient the axes as you see fit), derive the velocity transformation, and express the
velocity of B as observed by the civilization in A.

Problem 7

A circular storage ring with an orbit diameter of 10 meters stores protons with 1 GeV kinetic
energy.

1. How long do they take to complete one orbit?

2. What magnetic field strength is needed to constrain them in orbit?

Problem 8

Consider a planar square lattice with N classical spins at each site i represented by the unit
vector Si. Each spin is restricted to point along only four directions: ±x̂ and ±ŷ. Each spin
interacts only with its nearest neighbors according to the Hamiltonian

H = −J
∑
〈ij〉

Si · Sj,

where J > 0 is the exchange interaction and 〈ij〉 denotes a pair of nearest neighbor sites. Since
we are ultimately interested in the thermodynamic limit N → ∞ the effect of the boundary
is negligible.
By computing the internal energy of the ferromagnetic ordered state (in which all spins are
perfectly parallel to each other) and the entropy of the paramagnetic state (in which the spins
are completely disordered), and by considering the free energy of the system give an estimate
for the temperature at which the system undergoes a phase transition from the ferromagnetic
to the paramagnetic state in the limit N →∞.



Problem 9

Two protons are at large distance from each other. Initially one proton is at rest and the
other is moving head-on toward the first with kinetic energy E . The motion is nonrelativistic,
v � c. Find the minimal distance rmin between the protons. At what energy will the minimum
distance between the protons be rmin = 10−13 cm?

Problem 10

Mirrors 1 and 4 in Figure 1 are ‘half-silvered’ so half the intensity of light incident upon them
is transmitted and half is reflected. Ignore multiple reflections at all the mirrors and assume
that other reflections and attenuations are negligible.

1. Find the dependence of the intensity of transmission of the device on L, the indices
of refraction n1 and n2, and the wavelength λ of the incident monochromatic, phase
coherent light.

2. You are provided with a crude light detector that can only measure the maximum and
minimum of intensity with any confidence (but not intermediate light levels). You are
starting with both chambers evacuated and you have a pressure gauge. Show how to
determine the index of refraction of a gas as a function of pressure by monitoring the
transmission intensity as gas is added to one of the tubes.
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Figure 1: Problem 10
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Examination Instructions
Part 2 of this exam consists of 5 problems of equal weight. You will be graded on all 5 prob-
lems. For each problem provide as complete a solution as you can.

This is a closed-book examination. You may use a calculator. A list of some physical con-
stants and properties that you may require is included. Please take a moment to review
its contents before starting the examination.

Please put your assigned CODE NUMBER, not your name or student ID, in the
UPPER RIGHT-HAND CORNER of each piece of paper that you submit, along with
the relevant PROBLEM NUMBER in the UPPER LEFT-HAND CORNER.

BEGIN EACH PROBLEM ON A FRESH SHEET OF PAPER, so that no sheet
contains work for more than one problem.

USE ONLY ONE SIDE of the paper; if you require more than one sheet, be sure to
indicate, “page 1”, “page 2”, etc., under the problem number already entered on the sheet.

Once completed, all your work should be put in the manila envelope provided, IN
ORDER of the problem numbers
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Constants Symbols Values

Speed of light in vacuum c 3.00× 108 m/s

Elementary charge e 1.60× 10−19 C

Electron rest mass me 9.11× 10−31 kg

Electron rest mass energy mec
2 0.511 MeV

Permeability constant µo 1.26× 10−6 H/m

Permeability constant/4π µo/4π 10−7 H/m

Vacuum Dielectric Constant 1/4πε0 8.99× 109 N m2/C2

Proton rest mass mp 1.67× 10−27 kg

Proton rest mass energy mpc
2 938 MeV

Neutron rest mass mn 1.68× 10−27 kg

Neutron rest mass energy mnc
2 940 MeV

Planck constant h 6.63× 10−34 J·s
Gravitational constant G 6.67× 10−11 m3/s2·kg

Molar gas constant R 8.31 J/mol·K
Avogadro constant NA 6.02× 1023 /mol

Boltzmann constant kB 1.38× 10−23 J/K

Molar volume of ideal gas at STP Vm 2.24× 10−2 m3/mol

Earth radius 6.37× 106 m

Earth-Sun distance 1.50× 1011 m

Stirling’s Approximation ln(N !) = N ln(N)−N+(small corrections)

2



Problem 1

A bead of mass m is constrained to move on a frictionless hoop (see Figure 1). The hoop of
radius R is forced to rotate about the vertical diameter with angular speed ω. The position
of the bead is specified by coordinate θ. Write the Lagrangian for the system and derive
the differential equation of motion for θ. Include the gravitational force in your analysis.
Determine the equilibrium solutions for this problem, that is, the values of constant θ that
solve the differential equation of motion. For each solution, discuss the conditions under which
this solution exists and indicate whether it is a stable or an unstable equilibrium solution.

Figure 1: Problem 1

Problem 2

A charge q is uniformly distributed throughout a spherical volume of radius a. Surrounding
and concentric with this charge distribution is an uncharged, conducting spherical shell of
inner radius b and outer radius c (c > b > a). The space between the charge distribution and
the conducting shell is filled with a linear isotropic, homogeneous dielectric, having dielectric
constant κ. Find the polarization vector ~P in the dielectric, and find the electrostatic field ~E
and potential V everywhere. Take V to approach zero at large distances from this configu-
ration. Make two sketches highlighting the main features of the functional dependence of ~E
and V on the radial coordinate.
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Problem 3

An ideal gas engine is working in a reversible Joule cycle shown in the T vs. S diagram
(figure 2). The gas is monatomic and has n moles.

1. Draw the corresponding P-V diagram for the cycle.

2. Express the work done in terms of temperatures T1, T2, T3, and T4.

3. Find the efficiency of the engine in terms of these temperatures.
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Figure 2: Problem 3

4



Problem 4

A particle is in an infinitely deep one-dimensional potential well of the width a located at
0 6 x 6 a

V (x) = 0 , 0 6 x 6 a ,

V (x) = ∞ , x 6 0 , x > a .

1. Find the normalized wave functions that describe its energy states.

2. Find the first order corrections ∆En to the energy levels for a perturbation of the form

∆V (x) = V0
2x

a
, 0 6 x 6

a

2
,

∆V (x) = V0

(
2− 2x

a

)
,

a

2
6 x 6 a .

(Hint: to solve integrals of the form
∫
x cos kx dx you may use the technique of differentiating

with respect to a parameter, as in
∫
x cos kx dx = d

dk

∫
sin kx dx.)
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Figure 3: Problem 4
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Problem 5

It has been proposed to create a terrestrial source of high energy photons by having low energy
laser photons collide with accelerator-generated high energy electrons. Consider a laser photon
with energy ~ω = 1 eV that collides head-to-head with an electron and reflects backward. The
energy of the electron is E = 50 GeV (= 50 × 109 eV). Find the energy of the photon after
the collision.

[Hints: 1. note that you cannot neglect the electron mass because it is much larger than
the photon energy; 2. to simplify calculations you may want to transform to (and back
from) the center of mass frame. A different approach (with the same goal) is to make use of
(E + pc)(E − pc) = E2 − p2c2 = m2c4].
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