

Theoretical cosmology/astrophysics

Alexander Heger: Stellar evolution, nucleosynthesis, first stars

Keith Olive: Nucleosynthesis, Supersymmetry

(Dark matter), Inflation, first stars

Yong-Zhong Qian: Nucleosynthesis, supernovae neutrinos, first stars

Lilya Williams: Distribution of dark matter, structure formation, gravitational lensing

Observational cosmology/astrophysics

Prisca Cushman: Dark matter detection Shaul Hanany: CMB Vuk Mandic: Gravitational waves (LIGO) It is remarkable how well we know the evolution of the universe. Homogeneity and isotropy + GR give

Physical distances $\propto a\left(t
ight)$

$$H^{2} \equiv \frac{\dot{a}^{2}}{a^{2}} = \frac{8\pi}{3M_{p}^{2}}\rho - \frac{k}{a^{2}}$$

Big-Bang NucleosynthesisStructure formationPr1 sec - 3 mingalaxies, clusters a_a

Present acceleration $a_{\rm acc} \simeq 0.5 \, a_0$

Guth '81

k = +1

k = -1

k = 0

What is even more remarkable is the fact that the universe is so homogeneous and isotropic

Horizon problem

• Light travels finite distance in finite time Scales $> d_H(t)$ cannot be causally connected.

 $d_H(t) = a(t) \int_0^t \frac{dt'}{a(t')} \sim H^{-1}$

Solved if which physical scales (a) grow faster than horizon (a/\dot{a})

Need $\ddot{a} > 0$, acceleration \equiv inflation

Flatness problem

$$\frac{\dot{a}^2}{a^2} = \frac{8\pi}{3M_p^2} \left[\frac{\rho_M}{a^3} + \frac{\rho_R}{a^4} \right] - \frac{k}{a^2} + \frac{\rho_X}{a^{\gamma}}$$

Curvature $\leq 1\%$ today. Must have been $\leq 10^{-18}$ at BBN.

Requires ρ_X which "flattens the universe" at earlier times.

Idea: ρ_X dominates at very early times; then, it decays into matter / radiation. To dominate over curvature, $\gamma < 2$

But $\gamma < 2$ leads to increasing $\dot{a} \Rightarrow$ inflation

Isotropy problem

Why identical expansion rates $(H = \dot{a}/a)$ in all directions ?

Imagine universe started out not perfectly isotropic

non accelerated expansion \Rightarrow anisotropy grows

accelerated expansion \Rightarrow anisotropy $\rightarrow 0$

Homogeneity, gravitino, monopole, ... problems

We don't know $V(\phi)$

If
$$V = V_0 + \frac{1}{2}m^2\phi^2 + \dots$$

correct amplitude fluctualtions ${\rm for}\ m\sim 10^{13}\,{\rm GeV}/c^2$

REHEATING

Inflation

Hot big-bang cosmology

Unknowns:

Require:

Scale of inflation Inflaton ϕ Coupling to matter T > MeV, for Nucleosynthesis No gravitinos, $T < 10^9 \, GeV$ Matter / anti-matter asymmetry

- 1 "Slow" (perturbative) decay; quick thermalization
- 2 Fast decay, slow (?) thermalization

(1) Preheating: Stimulated particle production

(2) Rescattering: Produced quanta scatter against the zero mode of ϕ Destroys coherence & terminates production. Classical lattice simulations

(3) Thermalization: Very slow evolution towards thermal equilibrium $k_* \simeq 10 \, m_\phi \ll N^{1/3} \Rightarrow$ particle fusion. Kolmogorov turbulence

SUSY flat directions

Many scalar fields (one per particle). Complicated potential

Flat directions: E.g. $V = m_1^2 \psi_1^2 + m_2^2 \psi_2^2 + (\psi_1 - \psi_2)^4$

$$10^2 - 10^3 \,\text{GeV}$$
 $M_{\text{GUT}} - M_p$

- Low cost: We expect them to be excited during inflation
- ψ 's carry baryon number. Baryogenesis, Affleck, Dine '85

How do particles get mass ? $g H \overline{t} t$, $\langle H \rangle \sim 250 \, \text{GeV}$

• Now $m \sim \langle \psi \rangle \sim 10^{15} - 10^{19} \,\text{GeV}$. Slows down thermalization

Allahverdi, Mazumdar '05

Complex: rotations with slowly decreasing amplitude (expansion) $N_{\rm rot} \sim 10^{11}$ before perturbative decay

Nonperturbative effects ?

Expand $\psi(t) + \delta \psi$

Fields on a *t*-evolving background

North-south asymmetry

S > N for l = 5 - 40 (~ 1 in 100) Eriksen et al. '04, '07

$$\theta = 180^0 / l$$

Quadrupole-octupole

planarity & alignment (\sim 1 in 50) de Oliveira-Costa et al. '03 ; ... ; Copi et al. '06

alignm. for $l=2-5~(\sim 1~{\rm in}~1000$)

Axis of evil ! Land, Magueijo '05, '06

- Developed formalism for computing CMB anisotropies
- Initial singularity \rightarrow nonlinearities in perturbations

Gumrukcuoglu, Contaldi, Peloso '07

Better background (anisotrpy driven by a vector field)

Contaldi, Himmetoglu, MP, in progress

Open Problems

Fundamental scalar

• What is the inflaton ?

Brane-antibrane distance Component gauge field in extra dim.

• What is the maximal T reached at reheating ?

Fast / slow decay ? Fast / slow thermalization ? Can produce only particles with m < T

• How was the universe before inflation ?

Inflation erases informations Maybe some signal left in CMB Anomalies at large scales ?