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Matter + radiation in a homogeneous and
isotropic Universe

• Three possible geometries of constant cur-
vature

k = +1 closed

k = −1 open

k = 0 flat

• Physical scales expand proportionally to a
function of time only

|x1 − x2|t1 : |x1 − x2|t2 = a (t1) : a (t2)
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Horizon problem

• Light travels finite distance in finite time

dH (t) = a (t)
∫ t

0

dt′

a (t′)
∼ H−1

Scales > dH (t) cannot be causally connected.

• Since a/H−1 = a H decreases, physical dis-
tances (∝ a) increase more slowly than dH.
⇒ the sky we observe now consists of sev-
eral regions which were still not communicat-
ing in the past (1100 such regions in CMB)
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Homogeneity, gravitino, monopole, . . . problems
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mLHC ∼ few × 100GeV

After inflation, inflaton oscillates about the minimum of V
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MeV <∼ Trh <∼ 109 GeV

• Unsettled issues include generation of very massive particles,
M <∼ Treh, gravitational relics, connection Ninfl ↔ λ0, modulated
perturbations

• While basic formalism is known, major advance may require
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Nonperturbative inflaton decay

• Preheating: Kofman, Linde, Starobinsky ’94; ’97

Traschen, Brandenberger ’90; Shtanov, Traschen, Brandenberger ’94

Traschen, Brandenberger ’90; Shtanov, Traschen, Brandenberger ’94

Resonant particle production due to coherent inflaton oscillations

V =
1

2
m2 φ2 +

g2

2
φ2 χ2

⇒ ω2
χ = (k/a)2 + g2 φ (t)2

• Excitation when ω̇χ > ω2
χ

• Periodic “driving force” → resonant instability bands

• Complete computation, with two fields and M, and with

shows that ρχ ∼ ρφ within the first ∼ 10 rotations

ρχ

ρφ
" 10−2g2µ2105N

µ ≡
mφ√
2gφ0

" 10−14

suggests that flat directions decay before inflaton

• Nonlinear interactions crucial (lattice simulations required).
Gauge couplings → quick thermalization ?

• In any case, interesting dynamics, overlooked under the assumption

of perturbative decay. Γφ ∼ m3
φ/φ2 gives a decay after 1011 rotations !
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• Tensor mode

PT (k) =
2

M2
p

(
Hk

2π

)2

WMAP4

WMAP4 + ground based polarization telescopes

Planck

Bond, Contaldi, Lewis, Pogosyan ’04
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2
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2
φ2 χ2

φ χ
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FIG. 20. V = 1/2m2φ2 + 1/2g2φ2χ2,
g2M2

p /m2 = 2.5 × 105. The upper curve represents nχ.
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FIG. 21. V = 1/2m2φ2 + 1/2g2φ2χ2 + 1/2h2χ2σ2,
g2M2

p /m2 = 2.5 × 105, h2 = 100g2. The highest curve is
nχ. The field that grows latest is σ.
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FIG. 22. V = 1/2m2φ2 + 1/2g2φ2χ2,
g2M2

p/m2 = 2.5× 105. The upper curve represents the spec-
trum of χ.
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FIG. 23. V = 1/2m2φ2 + 1/2g2φ2χ2 + 1/2h2χ2σ2,
g2M2

p/m2 = 2.5 × 105, h2 = 100g2 The χ and σ spectra
are similar, while the spectrum of φ rises much higher in the
infrared.

15

– χ

– ψ

Stimulated particle production (exponential growth) whenever ω′ > ω2

−φ

(1) Stimulated particle production (exponential growth)

−φ

(1) Preheating: Stimulated particle production

(2) Rescattering: Produced quanta scatter against the zero mode of φ

Destroys coherence & terminates production. Classical lattice simulations

(3) Thermalization: Very slow evolution towards thermal equilibrium

k∗ # 10mφ $ N1/3 ⇒ particle fusion. Kolmogorov turbulence

−φ

(1) Preheating: Stimulated particle production

(2) Rescattering: Produced quanta scatter against the zero mode of φ

Destroys coherence & terminates production. Classical lattice simulations

(3) Thermalization: Very slow evolution towards thermal equilibrium

k∗ # 10mφ $ N1/3 ⇒ particle fusion. Kolmogorov turbulence

−φ

(1) Preheating: Stimulated particle production

(2) Rescattering: Produced quanta scatter against the zero mode of φ

Destroys coherence & terminates production. Classical lattice simulations

(3) Thermalization: Very slow evolution towards thermal equilibrium

k∗ # 10mφ $ N1/3 ⇒ particle fusion. Kolmogorov turbulence

−φ

(1) Preheating: Stimulated particle production

(2) Rescattering: Produced quanta scatter against the zero mode of φ

Destroys coherence & terminates production. Classical lattice simulations

(3) Thermalization: Very slow evolution towards thermal equilibrium

k∗ # 10mφ $ N1/3 ⇒ particle fusion. Kolmogorov turbulence

−φ

(1) Preheating: Stimulated particle production

(2) Rescattering: Produced quanta scatter against the zero mode of φ

Destroys coherence & terminates production. Classical lattice simulations

(3) Thermalization: Very slow evolution towards thermal equilibrium

k∗ # 10mφ $ N1/3 ⇒ particle fusion. Kolmogorov turbulence



Weakest possible coupling

Inflationary sector

Observable sector:

Standard model, MSSM ?

Gravity

Weakest possible coupling

Inflationary sector

Observable sector:

Standard model, MSSM ?

Gravity

Weakest possible coupling

Inflationary sector

Observable sector:

Standard model, MSSM ?

Gravity

Weakest possible coupling

Inflationary sector

Observable sector:

Standard model, MSSM ?

Gravity

p

!

"

"

matter

matter

M

1

Weakest possible coupling

Inflationary sector

Observable sector:

Standard model, MSSM ?

Gravity

Γ !
m3

φ

M2
p

Weakest possible coupling

Inflationary sector

Observable sector:

Standard model, MSSM ?

Gravity

Γ !
m3

φ

M2
p

τ =
h

Γ c2
∼ 10−25 s

Weakest possible coupling

Inflationary sector

Observable sector:

Standard model, MSSM ?

Gravity

Γ !
m3

φ

M2
p

τ =
h

Γ c2
∼ 10−25 s

Cf. Tosc. ∼ 10−37 s : 1012 oscillations before decaying !

Instantaneous thermalization

of the decay products

Weakest possible coupling

Inflationary sector

Observable sector:

Standard model, MSSM ?

Gravity

Γ !
m3

φ

M2
p

τ =
h

Γ c2
∼ 10−25 s

Cf. Tosc. ∼ 10−37 s : 1012 oscillations before decaying !

Instantaneous thermalization

of the decay products



It is possible that the inflaton has a weaker (e.g. gravitational)

coupling to matter

Perturbative decay &

instantaneous thermalization

MSSM flat directions

SUSY predicts many scalar fields (one per particle). Complicated potential

Flat directions: E.g.

V = m2
1 ψ2

1 + m2
2 ψ2

2 + (ψ1 − ψ2)
4

〈φ1〉 = 〈φ2〉 ∼ MGUT − Mp , mi ∼ 102 − 103 GeV

It
is

po
ss
ib
le

th
at

th
e
in
fla

to
n
ha

s
a
w
ea
ke
r
(e
.g
.
gr
av
it
at
io
na

l)

co
up

lin
g
to

m
at
te
r

P
er
tu
rb
at
iv
e
de

ca
y
&

in
st
an

ta
ne

ou
s
th
er
m
al
iz
at
io
n

M
SS

M
fla

t
di
re
ct
io
ns

SU
SY

pr
ed

ic
ts

m
an

y
sc
al
ar

fie
ld
s
(o
ne

pe
r p

ar
ti
cl
e)
.
C
om

pl
ic
at
ed

po
te
nt
ia
l

F
la
t
di
re
ct
io
ns
:
E
.g
.

V
=

m
2
1
ψ
2
1
+

m
2
2
ψ
2
2
+

(ψ
1
−

ψ2
)
4

M
G
U
T
−

M
p

10
2 −

10
3 G

eV

→

It
is

po
ss

ib
le

th
at

th
e

in
fla

to
n

ha
s

a
w

ea
ke

r
(e

.g
.

gr
av

it
at

io
na

l)

co
up

lin
g

to
m

at
te

r

P
er

tu
rb

at
iv

e
de

ca
y

&

in
st

an
ta

ne
ou

s
th

er
m

al
iz

at
io

n

M
SS

M
fla

t
di

re
ct

io
ns

SU
SY

pr
ed

ic
ts

m
an

y
sc

al
ar

fie
ld

s
(o

ne
pe

rp
ar

ti
cl

e)
.

C
om

pl
ic

at
ed

po
te

nt
ia

l

F
la

t
di

re
ct

io
ns

:
E

.g
.

V
=

m2
1ψ2

1+
m2

2ψ2
2+

(ψ
1

−
ψ

2)4

M
G

U
T

−
M

p
10

2
−

10
3
G

eV

→

It is possible that the inflaton has a weaker (e.g. gravitational)

coupling to matter

Perturbative decay &

instantaneous thermalization

MSSM flat directions

SUSY predicts many scalar fields (one per particle). Complicated potential

Flat directions: E.g.

V = m2
1 ψ2

1 + m2
2 ψ2

2 + (ψ1 − ψ2)
4

〈φ1〉 = 〈φ2〉 ∼ MGUT − Mp , mi ∼ 102 − 103 GeV

It
is

po
ss
ib
le

th
at

th
e
in
fla

to
n
ha

s
a
w
ea
ke
r
(e
.g
.
gr
av
it
at
io
na

l)

co
up

lin
g
to

m
at
te
r

P
er
tu
rb
at
iv
e
de

ca
y
&

in
st
an

ta
ne

ou
s
th
er
m
al
iz
at
io
n

M
SS

M
fla

t
di
re
ct
io
ns

SU
SY

pr
ed

ic
ts

m
an

y
sc
al
ar

fie
ld
s
(o
ne

pe
r p

ar
ti
cl
e)
.
C
om

pl
ic
at
ed

po
te
nt
ia
l

F
la
t
di
re
ct
io
ns
:
E
.g
.

V
=

m
2
1
ψ
2
1
+

m
2
2
ψ
2
2
+

(ψ
1
−

ψ2
)
4

M
G
U
T
−

M
p

10
2 −

10
3 G

eV

→

It
is

po
ss

ib
le

th
at

th
e

in
fla

to
n

ha
s

a
w

ea
ke

r
(e

.g
.

gr
av

it
at

io
na

l)

co
up

lin
g

to
m

at
te

r

P
er

tu
rb

at
iv

e
de

ca
y

&

in
st

an
ta

ne
ou

s
th

er
m

al
iz

at
io

n

M
SS

M
fla

t
di

re
ct

io
ns

SU
SY

pr
ed

ic
ts

m
an

y
sc

al
ar

fie
ld

s
(o

ne
pe

rp
ar

ti
cl

e)
.

C
om

pl
ic

at
ed

po
te

nt
ia

l

F
la

t
di

re
ct

io
ns

:
E

.g
.

V
=

m2
1ψ2

1+
m2

2ψ2
2+

(ψ
1

−
ψ

2)4

M
G

U
T

−
M

p
10

2
−

10
3
G

eV

→

It is possible that the inflaton has a weaker (e.g. gravitational)

coupling to matter

Perturbative decay &

instantaneous thermalization

MSSM flat directions

SUSY predicts many scalar fields (one per particle). Complicated potential

Flat direction: E.g.

V = m2
1 ψ2

1 + m2
2 ψ2

2 + (ψ1 − ψ2)
4

〈φ1〉 = 〈φ2〉 ∼ MGUT − Mp , mi ∼ 102 − 103 GeV

It is possible that the inflaton has a weaker (e.g. gravitational)

coupling to matter

Perturbative decay &

instantaneous thermalization

MSSM flat directions

SUSY predicts many scalar fields (one per particle). Complicated potential

Flat directions: E.g.

V = m2
1 ψ2

1 + m2
2 ψ2

2 + (ψ1 − ψ2)
4

〈φ1〉 = 〈φ2〉 ∼ MGUT − Mp , mi ∼ 102 − 103 GeV

It is possible that the inflaton has a weaker (e.g. gravitational)

coupling to matter

Perturbative decay &

instantaneous thermalization

SUSY flat directions

Many scalar fields (one per particle). Complicated potential

Flat directions: E.g.

V = m2
1 ψ2

1 + m2
2 ψ2

2 + (ψ1 − ψ2)
4

MGUT − Mp 102 − 103 GeV →

It is possible that the inflaton has a weaker (e.g. gravitational)

coupling to matter

Perturbative decay &

instantaneous thermalization

SUSY flat directions

Many scalar fields (one per particle). Complicated potential

Flat directions: E.g.

V = m2
1 ψ2

1 + m2
2 ψ2

2 + (ψ1 − ψ2)
4

MGUT − Mp 102 − 103 GeV →

SUSY flat directions

Many scalar fields (one per particle). Complicated potential

Flat directions: E.g.

V = m2
1 ψ2

1 + m2
2 ψ2

2 + (ψ1 − ψ2)
4

MGUT − Mp 102 − 103 GeV →

• Low cost: We expect them to be excited during inflation

• ψ’s carry baryon number. Baryogenesis, Affleck, Dine ’85

How do particles get mass ? g H t̄ t , 〈H〉 ∼ 250GeV

• 〈ψ〉 ∼ 1015 − 1019 GeV. Slows down thermalization,

Allahverdi, Mazumdar ’05
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MGUT − Mp 102 − 103 GeV →

• Low cost: We expect them to be excited during inflation

• ψ’s carry baryon number. Baryogenesis, Affleck, Dine ’85

How do particles get mass ? g H t̄ t , 〈H〉 ∼ 250GeV

• Now m ∼ 〈ψ〉 ∼ 1015 − 1019 GeV. Slows down thermalization

Allahverdi, Mazumdar ’05
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• Developed formalism for computing CMB anisotropies

• Initial singularity → nonlinearities in perturbations

Gumrukcuoglu, Contaldi, MP ’07

• Better background (anisotrpy driven by a vector field)

Contaldi, Himmetoglu, MP, in progress

Gumrukcuoglu, Olive, MP, Sexton
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FIG. 1: The ! = 2 (top panel) and ! = 3 (bottom panel) multipoles from the ILC123 cleaned map, presented in Galactic
coordinates, after correcting for the kinetic quadrupole. The solid line is the ecliptic plane and the dashed line is the supergalactic
plane. The directions of the equinoxes (EQX), dipole due to our motion through the Universe, north and south ecliptic poles
(NEP and SEP) and north and south supergalactic poles (NSGP and SSGP) are shown. The multipole vectors are plotted as
the solid red symbols for ! = 2 and solid magenta for ! = 3 (dark and medium gray in gray scale versions) for each map, ILC1
(circles), ILC123 (triangles), TOH1 (diamonds) and LILC1 (squares). The open symbols of the same shapes are for the normal
vectors for each map. The dotted lines are the great circles connecting each pair of multipole vectors for the ILC123 map. For
! = 3 (bottom panel), the solid magenta (again medium gray in the gray scale version) star is the direction of the maximum
angular momentum dispersion axis for the ILC123 octopole.
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• Developed formalism for computing CMB anisotropies

• Initial singularity → nonlinearities in perturbations
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• Better background (anisotrpy driven by a vector field)

Contaldi, Himmetoglu, MP, in progress

Gumrukcuoglu, Olive, MP, Sexton

CMB



Bianchi 1:

ds2 = dt2 − a (t)2dx2 − b (t)2
[

dy2 + dz2
]

tiso kiso

ds2 = dt2 − a (t)2dx2 − b (t)2
[

dy2 + dz2
]

Ha =
ȧ
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