University of Minnesota
School of Physics and Astronomy

GRADUATE WRITTEN EXAMINATION
SPRING 2006 — PART I

Thursday, January 12, 2006 — 9:00 am to 12:00 noon

Part 1 of this exam consists of 12 problems of equal weight. You will be graded on your
10 best efforts. :

This is a closed-book examination. You may use a calculator. A list of some physical
constants and properties that you may require is included. Please take a moment to
review its contents before starting the examination.

Please put your CODE NUMBER (not your name) in the UPPER RIGHT-HAND
CORNER of each piece of paper that you submit, along with the relevant problem
number in the UPPER LEFT-HAND CORNER.

BEGIN EACH PROBLEM ON A FRESH SHEET OF PAPER, so that no sheet
contains work for more than one problem.

USE ONLY ONE SIDE of the paper; if you require more than one sheet, be sure to
indicate, “page 17, “page 2”, etc., under the problem number already entered on the sheet.

Once completed, all your work should be put in the manila envelope provided, IN
ORDER of the problem numbers.



Constants
Speed of light in vacuum
Elementary charge
Electron rest mass
Electron rest mass energy
Permeability constant
Permeability constant/4n
Proton rest mass
Proton rest mass energy
Neutron rest mass
Neutron rest mass energy
Planck constant
Gravitational constant
Molar gas constant
Avogadro constant
'Boltzmann constant

Molar volume of ideal gas at STP

Earth radius
Earth-Sun distance

Stirling’s Approximation:

In(N!) = NIn(N) — N + (small corrections)

Symbols

values

3.00x 108 m/s
1.60x10-19 C
9.11x10-31 kg
0.511 MeV
1.26x10-6 H/m
107 H/m
1.67x10-27 kg
938 MeV
1.68x10-27 kg
940 MeV
6.63x10734 Jes
6.67x10-11 m3/s2ekg
8.31 J/moleK
6.02x1023 /mol
1.38x10-23 J/K
2.24x10-2'm3/mol
6.37x106 m
1.50x1011 m



Spring 2006 GWE Short Problems

1) Consider a particle which has only two energy states, £; = 0, E; = ¢.
a) Compute the average energy <E> of such particle in a reservoir with temperature 7'
b) Calculate the heat capacity C, of a system of N such non-interacting particles.

~2
2) Find the commutator of the operators of coordinate x and kinetic energy K = L_ and the

corresponding uncertainty relation for Ax and AK .

3) Consider a satellite that is initially in a circular orbit around the Sun at the distance of the
Earth’s orbit (r =1 AU = 1.50x10® km). A rocket is fired in the direction opposite to its velocity
and adds 10 km/s to its velocity. How far from the Sun will the satellite go?

4) Consider a charged, insulating slab that has a thickness 2L in the z direction and is very large
in the x and y direction that contains a charge per unit volume that varies linearly from —pg to po
from one side of the slab to the other, i.e., p = poz /L with z going from —L to L. Find the electric
field everywhere inside the slab (magnitude and direction), and the potential difference between
the two edges of the slab.

5) You are walking on the ice, in the middle of a large Minnesota lake in winter, when you come
across a hole cut straight through the ice, probably by ice fishermen. Looking down the hole, you
notice that the water level is 6 cm below the surface of the ice. What is the thickness of the ice
covering the lake? Density of ice = 0.9 g/cm3 .

6) An electron in a hydrogen atom does not fall to the proton because of quantum motion (which
may be accounted for by the Heisenberg uncertainty relation for an electron localized in the
volume with size r). This is true because the value of the Coulomb potential energy goes to
minus infinity (with decreasing distance to the center 7) relatively slowly, like -1/r. For any
potential behaving as (- 1//°) is such an “atom” stable against collapse? If not, find the range of
values of s for which the “atom” is stable, so that the electron” does not fall to the center.

7) Estimate the average velocity (in m/s) and the mean free path (in m) of nitrogen molecules in
this room.

8) What is the velocity of the recoil of an Fe’’ nucleus that emits a 100 keV photon, both in units
of speed of light and meters per second.



9) A recently discovered effect (called the Quantum Hall effect) measures with the ten digit
accuracy “quantum resistance”, which is the combination of the charge of the electron e and the
Planck constant /.
a) Find this unique combination of e and / and express this resistance in Ohms.
b) Show that fine structure constant &’/ [4my hic] = 1/137
¢) How many formulas with resistance dimensionality can one write adding the light
velocity c to e and 4
d) Find the simplest (shortest) of these formulas and calculate the corresponding resistance
in Ohms. (This resistance is called “the resistance of vacuum™.)

10) A wire cube is welded from 12 identical metallic wires. The resistance of cach wire is 1
Ohm. How large is the resistance of the cube measured between contacts attached to the ends of
a bulk diagonal?

11) In a plasma with equal concentration of free positive and negative ions the Coulomb
potential &’ /4ney rof a point charge e is screened and acquires the Yukawa form

exp(-u r)c’ /4ne, r. Herer is the distance from the point charge to the observation point and  is
the inverse screening radius.

a) Calculate the Fourier transform of the Yukawa potential.

b) What is Fourier transform of the Coulomb potential?

12) A coaxial cable of length /=1 m is made of two thin coaxial copper cylinders with diameters

a=1cm and b=2 cm separated by air. At one end of the cable the internal and external cylinders
are connected by a short wire. At the other end internal and external cylinders are connected to
opposite poles of a battery. The current runs on the external cylinder to the opposite end of the
cable and then returns back to the battery via the internal cylinder. Calculate the cable inductance
L in H (henry).



University of Minnesota
School of Physics and Astronomy

GRADUATE WRITTEN EXAMINATION
SPRING 2006 — PART 2

Friday, January 13, 2006 — 9:00 am to 1:00 pm

Part 2 of this exam consists of 6 problems of equal weight. You will be graded on your 5
best efforts.

This is a closed-book examination. You may use a calculator. A list of some physical
constants and properties that you may require is included. Please take a moment to
review its contents before starting the examination.

Please put your CODE NUMBER (not your name) in the UPPER RIGHT-HAND
CORNER of each piece of paper that you submit, along with the relevant problem
number in the UPPER LEFT-HAND CORNER.

BEGIN EACH PROBLEM ON A FRESH SHEET OF PAPER, so that no sheet
contains work for more than one problem.

USE ONLY ONE SIDE of the paper; if you require more than one sheet, be sure to
indicate, “page 17, “page 27, etc., under the problem number already entered on the sheet.

Once completed, all your work should be put in the manila envelope provided, IN
ORDER of the problem numbers.



Constants

Speed of light in vacuum
Elementary charge
Electron rest mass
Electron rest mass energy
Permeability constant
Permeability constant/4n
Proton rest mass

Proton rest mass energy
Neutron rest mass
Neutron rest mass energy
Planck constant
Gravitational constant
Molar gas constant
Avogadro constant
Boltzmann constant

Molar volume of ideal gas at STP

Earth radius
Earth-Sun distance

Stirling’s Approximation:

In(N!) = NIn(N) — N + (small corrections)

Symbols
c

values
3.00x108 m/s
1.60x10-19 C
9.11x10-31 kg
0.511 MeV
1.26x10-6 H/m
107 H/m
1.67x1027 kg
938 MeV

1.68x1027 kg

940 MeV
6.63x10-34 Jes
6.67x10-11 m3/s2ekg
8.31 J/moleK
6.02x1023 /mol
1.38x10°23 J/K
2.24x10°2 m3/mol
6.37x106 m
1.50x10!1 m



Spring 2006 GWE LONG PROBLEMS

1) Consider a nucleus of **°U, which has 92 protons. Protons are distinguishable from neutrons
and both are fermions, so two of each particle can be put into each energy state (spin up, spin
down). Assume that attraction of nucleons creates for each of them a large negative constant
potential energy -V inside the sphere with the radius of 1.3 A" 10™° m, where A is the atomic
weight. Outside the sphere the nucleon potential energy vanishes.

a) Assuming that both protons and neutrons are ideal gases estimate the Fermi energies of
protons and neutrons and the total kinetic energy of *°U nucleons in MeV.

b) Estimate the Coulomb energy of >°U in MeV.

2) In semiconductors electron states of some donors are similar to those of the hydrogen atom
because a donor has the same charge as a proton. The only difference is that the Coulomb
potential of an electron in the field of a donor ¥(r) = - ¢’ / (4nKey r) contains a large dielectric
constant K of a semiconductor and the electron has an effective mass m* which is usually much
smaller than the free electron mass m.

a) Calculate the corresponding ground state energy in eV of a hydrogen-like donor in GaAs (K =
12.5 and m*= 0.07 m).

b) Write the wave function of such a state. Calculate corresponding Bohr radius a.

¢) Consider a donor located at the interface z = 0 of the semiconductor (GaAs), which occupies
half space z > 0. We can assume that at z < 0 the electron potential energy V(r)= o, so that an
clectron cannot penetrate there. On the other hand, at z > 0 the electron is still subject to the
three-dimensional Coulomb potential V(r) = - e/ (4nKepr) (the donoris atr=0). If we direct
the polar axis of the spherical system of coordinates along z this means that the wave function
vanishes at = 772. Find the ground state energy of such a surface donor using your knowledge
of properties of wave functions of excited states of the conventional hydrogen atom.

3) A particle with the mass M is constrained to move (with gravity but .
without friction) on a circular wire with the radius R rotating with <30
constant angular velocity Q about a vertical diameter. The position of

the particle can be characterized by an angle 0, between the radius

vector from the center of the circle to the particle and direction to the

“south pole”. Find the equilibrium position 0 of the particle and the

frequency of small oscillations about this equilibrium. Show that the

behavior of the system is different above and below a critical angular

velocity €.



4) A metallic ball with radius R is immersed and suspended in a weakly conducting medium with
conductivity o in the middle of a large metallic vessel (say, salty water in a metallic bathtub).

a) One wire from a battery is attached to the ball and the second wire is attached to the
bathtub. Calculate the resistance of the media. (This is how a standard plasma probe test
the ionization degree of plasma.)

b) The ball is charged, the battery is disconnected at = 0 and the ball discharges with time.
Find how the ball charge Q depends on time and the characteristic time of this discharge
writing a simple differential equation for Q(¢) (this characteristic time is called the
Maxwell time) .

¢) If you can not do b) try to estimate the Maxwell time from the point of view of
dimensionality analysis.

5) In order to explain the experimental data on the low temperature specific heat of super-fluid
helium, Landau (1938) conjectured that the low energy spectrum of its Bose excitations, E(p),
has a peculiar form. Namely at p << pj it goes as E(p) = sp, reaches a maximum and then goes
through a minimum at p = py, where E(py) = D. Excitations in the first (linear) part of the
spectrum are called phonons. They are similar to acoustic phonons in solids. Excitations in the
parabolic minimum near p = py at are called rotons.

a) Calculate energy and the specific heat of unit volume of super-fluid helium at very low
temperatures. Use some notation for the dimensional integrals if you do not know their values.
b) Formulate strong inequality on temperature, which guarantees that above results are valid

E(p)

D

0 Po



6) A futuristic starship with mass M (including fuel) equal to one million metric tons departs
from a base in outer space. The starship is propelled by converting, with 100% cfficiency, its fuel
into light which is emitted exactly opposite to the thrust. The starship accelerates in a straight
line and reaches the cruising speed and then decelerates (also in straight line) reaching its
destination near a star in a distant galaxy, which moves very slowly with respect to the ship's
home base. On the way back the ship again accelerates to its cruising speed and then decelerates
returning to the base. The cruising speed of the starship corresponds to the time dilation (as
observed from the base) by 10 times. In other words, at cruising speed its energy is 10 times the
rest energy.

a) Find the fraction of mass which reaches cruising speed after first acceleration.

b) What fraction of remaining mass is left after the first deceleration, when it arrives at the
distant galaxy?

¢) What is maximum mass m of the starship (excluding the fuel) which can make this trip?



