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A random gravitational force can be generated by seismic noise, by atmospheric acoustic noise,
and by moving massive bodies. An estimate of the gravitational power spectrum at a point on the
Earth is given. Such a force is an important source of noise in an interferometric gravitational wave

antenna below f =10 Hz.

INTRODUCTION

A new generation of interferometric antennas for the
detection of gravitational radiation of cosmic sources is
being planned. Detection of gravitational waves is per-
formed by measuring the relative displacements of several
nearly free masses which carry the mirrors defining a
Michelson interferometer. The measured quantity is the
difference (as a function of time) in the lengths of the two
orthogonal arms of the interferometer. In principle, this
form of antenna can be sensitive down to quite low fre-
quencies. In practice, various noise sources will limit the
useful bandpass. One form of noise is random gravita-
tional forces. This is a particularly important form of
noise, since gravitational forces cannot be shielded, even
in principle.

The effect of random gravitational forces, or gravity
gradient noise, has been an important consideration in all
sensitive gravitational experiments. (See the review by
Everitt.!) Suzuki and Hirakawa’ pointed out the impor-
tance of nonradiative fluctuations in the local gravitation-
al field for low-frequency gravitational-wave experiments.
In the present work we make a quantitative estimate of
this noise source, with special emphasis on the limitations
which it places on the performance of interferometric
gravitational-wave antennas with baselines of 1 km or
greater.

Sources of random gravitational forces can be grouped
into two categories. One sort is fluctuations in the density
of a medium (air or earth) surrounding the antenna. The
other kind is the motion of isolated massive bodies in the
vicinity of the antenna. (These are not completely distinct
categories—an airplane generates sound, so both sorts of
sources are present.)

FORCES DUE TO DENSITY FLUCTUATIONS
IN A MEDIUM

We can make an estimate of the magnitude of the
forces due to density fluctuations by using dimensional
analysis. First, note that gravitational forces produce on a
test body a force that is proportional to the mass of the
test body, or in other words, a force per unit mass (or ac-
celeration) that is independent of the mass of the test
body. We will want to solve the problem in the frequency
domain, so we write the acceleration as w?x. By Newton’s
law of gravity, the gravitational acceleration must be pro-
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portional to the constant of gravitation G, to the density
of the medium p, and to some measure of the fluctuations.
If we are considering forces from seismic motion, the data
we have at our disposal are spectra of the displacement of
the Earth, X. Since the quantity GpX has the dimensions
of force per unit mass, then Newton’s second law gives
w*x =AGpX, where A is a dimensionless constant which
depends on the geometry of the problem. For the case of
air-pressure fluctuations, the measurements give the frac-
tional pressure fluctuation Ap/p. If the characteristic
length of a coherent pressure fluctuation is A, then
Newton’s second law gives in this case w?x =BGpAAp /p,
where B is another dimensionless constant. In the
remainder of this section, we will make a simple model to
estimate the value of these dimensionless constants. Fi-
nally, we will plug in measured values of the disturbance
spectra to determine the approximate magnitude of the
random gravitational noise in an interferometric antenna.

The air or the Earth fills a half-space around the anten-
na. (Refer to Fig. 1). Imagine that in one region there is
a fluctuation AM(t)=M(t)—(M(z)). This causes a fluc-
tuating force on a test mass m equal to

— L (1)

Taking the x component and transforming the equation
from the time domain to the frequency domain we find

F 6
= —GAM(0) 2 . @)
m r

We can substitute the equation of motion of the test mass
(assuming it to be suspended from some sort of spring and

damper giving it resonant frequency wo and damping time
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FIG. 1. Interferometer configuration.
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7) and finally take the squared modulus of both sides to
yield
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Now consider that the half-space is filled with
equivalent regions of fluctuating mass. Assume that the
size of a coherently fluctuating region is of order A/2,
where A=v,/f is the acoustic wavelength. Assume also
that the fluctuations in different regions are independent
of each other. (The physical validity of these simplifying
assumptions will be discussed below.) Then the random
forces from the different regions add in quadrature. So
we have

2
(02— 02+ | | x(w) |2

el

29
=G2|AM(0) |23, ————°°rs4 , @
where the sum is taken over all the regions in the half-
space. We evaluate the sum by approximating it as an in-
tegral. It converges if we introduce an inner cutoff radius
7 min=A/4. We find
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(The fact that we need to introduce an inner cutoff on the
integral indicates that the random gravitational force is
dominated strongly by the nearest few coherently fluc-
tuating regions. The choice 7,;, =A/4 is the natural one
in the context of our model. Choosing a number much
smaller would violate the assumption that the sum over
regions can be approximated by an integral. Thus, al-
though this step cannot be regarded as exact, it is unlikely
to give an answer which underestimates the effect by a
large factor.) Upon substitution into the previous equa-
tion we obtain
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The interferometer can only measure differences in the

separations of two pairs of test masses. Consider the case
A <<L, where L is the nominal separation between two
masses. Then, since the random force is dominated by the
regions within a few wavelengths of the test mass, the
forces on any two test masses are uncorrelated, so they
add in quadrature. Similarly, the two orthogonal arms of
the interferometer are uncorrelated, so altogether the
difference in separations is four times (in power) the
motion of an individual mass, or
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The baseline lengths being considered for the next genera-

tion of interferometric antennas are in the range 1—10
km. The highest sound speed present is that of P waves
in the Earth, of order 8 km/sec. The short-wavelength
approximation should be valid for frequencies above 10
Hz. We treat the long-wavelength approximation in the
Appendix.

We still need to cast these formulas in terms of observ-
ables. We can write, for air-pressure fluctuations,

6
pa’| Ap(@)|?

2 b
Pa

A

5 (8)

|AM(0) |2=V?| Ap(w) | =%

where the extra factor of + approximates 1/y? for adia-
batic compression of air. Finally,
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Thus, the path-length-difference fluctuations due to air-
pressure fluctuations are
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The case of P waves in the Earth is analogous, except
that it is a displacement rather than a pressure variation
that is usually measured. We find
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where AX is the displacement of a point in the Earth from
its equilibrium position. Thus we have for the path-
length difference

| Ax (@) |2
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In addition, vertical motion at the earth-air interface
causes random gravitational forces through the replace-
ment of a volume of low-density air with high-density
earth. Consistent with our previous model, we here make
the assumption that the area of a coherent fluctuation on
the Earth’s surface should be of order (A/2)%. The sum
over fluctuating regions must here be carried out over a
plane instead of a half-space. We find
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So in this case
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Now
4
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where AZ is the vertical motion of the Earth’s surface.
The path-length-difference due to this mechanism is
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This is roughly an order of magnitude smaller than the ef-
fect due to density fluctuations distributed through the
Earth.

One might wonder whether our unphysical assumption
that the fluctuations in neighboring regions are uncorre-
lated leads us to underestimate the random gravitational
forces. In fact, the difference between the two models is
not very large. An example will suffice to illustrate the
point. For a half-plane wave in air with a root-mean-
square amplitude Ap(w), it is easy to write down (by anal-
ogy with the electric field inside a parallel-plate capacitor)
that the force per unit mass is

4‘@”’ AVIM G Ap(o) . (17)
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The path-length difference A)'c'(a)) may be up to four times
this size, or may cancel, depending on the relative phases
of the wave at the three test masses. This is to be com-
pared to
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which is the analogous quantity computed under the as-
sumption of uncorrelated regions. The difference is small.

One can imagine another example where correlation
lengths much longer than a wavelength threaten to drasti-
cally increase the amplitude of random gravitational
forces. If we consider a P wave arriving at the antenna
from a direction near the nadir, then it appears that verti-
cal motions of the Earth’s surface might be generated
which are coherent over areas much larger than (1/2)%
Fortunately, the real world is more complicated than our
simple model. It has been found that, for frequencies
greater than or of order 1 Hz, scattering from inhomo-
geneities in the Earth reduces the coherence length sub-
stantially below a wavelength.> Thus, in this frequency
band, the calculation leading to Eq. (12) does not appear
to be an underestimate, but is rather a substantial overesti-
mate.

Now we can use these formulas to produce some num-
bers. For definiteness and simplicity we will assume that
we can ignore the resonance or the damping of the anten-
na masses down to 1 Hz, and that the antenna baseline is
long enough that the short-wavelength approximation is
adequate. Then

> | Ax(0) | *=0* | Ax(w)|*.  (19)
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FIG. 2. Interferometer path-length-difference power spec-

trum, due to random gravitational forces from seismic noise and
from atmospheric noise. Two estimates of the seismic noise are
shown, corresponding to an average site and a quiet site.

For the air our formula reads
3 2 2
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For the Earth, we will use our formula based on one de-
gree of freedom, since accounting for three degrees of
freedom is approximately compensated by the admixture
of noncompressional waves with P waves. We have

2= 1672 G pe
3

Data for the air-pressure power spectrum come from
Posmentier* and Balachandran.> The spectrum can be ap-
prox1mated by | Ap(f)|*=3x 10° nbar’/Hz (1 Hz/f)* be-
tween f=7 and 3 Hz, and a constant value of 3 10
nbar’/Hz at h1gher frequencies. For ground motion, the
compilation of Fix® is used. Between f=-5 and 10 Hz,
| AX(f)|? is proportional to (1 Hz/f).* At an average
site, the constant of proportionality is about 3X10~!3
cm?/Hz, while at quiet sites the constant may be two or-
ders of magnitude smaller. The calculated path-length-
difference power spectra are graphed in Fig. 2. An op-
timistic but possible value for the intrinsic noise of the in-
terferometer (shot noise in 100 W of laser illumination) is
10734 cm?/Hz. Depending on the noisiness of the site,
observations at this sensitivity will be prevented by ran-
dom gravitational forces below some frequency in the
range of 5 to 10 Hz. Even at a quiet site, sometimes the
noise level will be augmented by transient seismic or at-
mospheric events or by anthropogenic noise.

| Ax (@) |AX () |2. @21

FORCES DUE TO MOTION OF MASSIVE BODIES

The gravitational force due to moving massive bodies
will also affect the interferometer arm lengths. (The ef-
fect on a resonant antenna has been calculated by Suzuki
and Hirakawa.”) Unless the rate of encounters with such
objects is large, it is inappropriate to treat these distur-



30 TERRESTRIAL GRAVITATIONAL NOISEON A . .. 735

bances as a stationary random process, as we could for the
sources considered in the previous section. Instead, we
analyze the characteristics of individual events.

Consider a point mass M moving at ground level with
constant velocity v oriented in the y direction, with im-
pact parameter b relative to a test mass m. (See Fig. 3.)
Then, it is easy to show that the x component of the force
is

F, GMb  GMb 22)
m r3(t) (b2+v2t2)3/2
and that the y component is
F
Ly _ GMwr _ GMut (23)

m r3(t) (b2+v2t2)3/2 ’
where t=0 is taken to be the time of closest approach.
To study the detectability of this signal against a back-
ground noise whose power spectrum is known, it is useful
to study the Fourier transforms of these expressions. The
transforms are tabulated by Erdelyi et al.® (Note that the
X component is even in time, so only the cosine transform
contributes, while the y component is odd in time, so only
the sine transform contributes.) These transforms are
equal to some constants times wKy(w) (y component) and
wK ;(w) (x component), where w=bw /v and K, and K,
are the first two modified Bessel functions of the third
kind. Near w=1 (w=v/b) the transforms are equal to a
number of order unity times 2GM /bv. For large w, the
transforms decline steeply, asymptotically going as
e ~"/w!/2. The equivalent power spectral density is given
by the square of the Fourier transform divided by the
temporal width of the pulse, AT =b /v. This gives

co"xz(co)=L
P

2
2GM ] e M, (24)
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As an example, consider an airplane with a mass of 100
tons and speed 250 m/sec, passing 10 km away. The
characteristic frequency is w=v/b=5 sec”!. The ac-
celeration spectral density at 10 Hz (w=2100) is

!
|

FIG. 3. An encounter of a test mass with a moving massive
body.

e 400535 10~%* cm?/sec*Hz, a preposterously small
number. A 1-kg rabbit running 100 m away at a speed of
10 m/sec gives e !20x3x 1072 cm?/sec*Hz, also
minuscule. On the other hand, the same rabbit running
within 1 m of the end mass (probably as close as it could
get) would have w=6. Then the acceleration spectral
density is 21072 cm?/sec*Hz. The equivalent dis-
placement spectral density is 1X 1073° cm?/Hz, which is
not at all negligible compared to the potential sensitivity
of gravitational-wave antennas. (Note that we have com-
puted the effect on a single mass only. This is a good ap-
proximation for impact parameters b small compared to
the baseline L. For larger b, the differential motion is
smaller than the motion of a single mass.)

Spero® has also considered the problem of gravitational
disturbances by moving massive bodies. Instead of the as-
sumption of constant velocity made above, he considers
an object of mass M which suddenly starts moving at
velocity v, stopping again after an interval ¢. The net
gravitational displacement in a time ¢ of a test mass a dis-
tance b away is Ax =Muvt3/b3. The Fourier transform of
this pulse has a »~2 dependence on frequency, rather than
the exponential dependence found above. This makes a
larger class of objects significant sources of random gravi-
tational forces at frequencies large compared to w=v/b.
Of course, the worst case is if an object executes an oscil-
latory motion. Then the disturbance is concentrated at
the oscillation frequency (and perhaps its harmonics).

DISCUSSION

By any ordinary standard, the random gravitational
forces at the surface of the Earth are small. Yet, we have
found that they set a fundamental limit to the perfor-
mance of a high-sensitivity gravitational-wave antenna
below 10 Hz. This is not to say that achieving perfor-
mance limited by random gravitational forces will be easy.
One measure of the challenge is that the motion X of a
point on the Earth’s surface at 1 Hz is many orders of
magnitude in amplitude larger than the motion x of a test
mass induced by random gravitational forces due to
seismic density fluctuations. This is easily seen by noting
that the end-mass motion due to gravitational perturba-
tions is x =4(Gp/w?)X =107%X (at 1 Hz), while (with no
isolation) motion due to mechanical coupling is x=X.
The elastic displacement of the Earth may also be sub-
stantially larger than the gravitational displacement of a
test mass in the case of a moving body accelerating
against the Earth, as in the model of Spero. This means
that substantial effort must be put into mechanical
vibration-isolation systems in order to attain the highest
possible sensitivity. Still, the random gravitational forces
set a noise floor below which no terrestrial antenna will
see.

-

APPENDIX: LONG-WAVELENGTH
APPROXIMATION

For density fluctuations with A >>L, the random gravi-
tational disturbance to an interferometer is not the in-
coherent sum of the forces at the individual test masses.
Rather, we are dealing with a fluctuating gradient in the
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gravitational force across the interferometer. It is neces-
sary to explicitly take account of the difference in the
gravitational force at the different test masses due to each
fluctuating region. (It is not necessary in the short-
wavelength case because the random force is strongly
dominated by the nearest few cells, as indicated by the
strong dependence of the sum over cells on the inner cut-
off radius. If the wavelength is short compared to the
spacing between the masses, the nearest cells to each mass
are different ones, and are by assumption uncorrelated. If
the wavelength is long, it is the same cells which are the
nearest ones to each test mass.) Thus we are interested in
the quantity

FOx le

Foy Fy

m m

m m

where F, is the x component of the force on the central
mass, F,, is the y component of the force on end mass 2,
etc. To first order in L /r (remembering that > A), this
quantity is equal to

3GML
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The analog to 4 cos?0/r* in the short-wavelength case [see
Eq. (5)] is the quantity
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In place of Eq. (7) we have
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The two extra powers of w mean that, when measured
spectra are plugged in for | AM(w)|? the random gravi-
tational force is a less steeply falling function of frequen-
cy range discussed in the main body of the paper. Naively
evaluating the formulas for the two cases at w=2mv /L
(where the derivations for both are invalid), the long-
wavelength formula gives a number 16 times larger (times
4 in amplitude) than the short-wavelength formula. The
designer of gravitational-wave antennas will be interested
that in this long-wavelength (small-antenna) regime, the
gravity gradient noise grows linearly in amplitude with
antenna baseline. For a 1-m antenna, the wavelength is
equal to the baseline at 300 Hz for sound in air, at higher
than 5 kHz for P waves in the Earth. For a 30-m anten-
na, these frequencies are 10 and 200 Hz, respectively. At
an average site, the gravitational noise goes below the shot
noise for 100 W illumination (10~3* cm?/Hz) near 2 Hz
for a 1-m antenna, by 6 Hz for a 30-m antenna.
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