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The steady state diffusion of gases through capillaries or through the pores of a solid when fusion, bulk flow of the gases is free to 
the total pressure in the system is constant is considered. I t  is shown that the ratio of the molar occur, but in the present situation 
diffusion rate of the lighter gas to that of the heavier gas must be equal to the square root such bulk flow is effectively prohibited 

by the mechanics of flow in the fine of the ratio of the molecular weight of the heavier to the lighter. 
From simple momentum transfer considerations a diffusion equation i s  derived to describe 

the diffusion rate as the nature of the process changes from ordinary mutual diffusion to pores* Therefore the rates 
Knudsen diffusion. This equation is  shown to give good agreement with experimental measure- Of diffusion Of the molecular 
ments of diffusion rates in porous solids. A structural parameter of the porous solid, the diffusion species may be different, and the 
ratio, is  calculated from the experimental results and compared with the experimental value usual concept Of equimolal counter 
of the same ratio found from electrical resistance ratios and from flow measurements. diffusion for a constant pressure sys- 

The process of gas diffusion through 
capillaries, or through the fine chan- 
nels of porous solids, is of considerable 
importance in operations concerned 
with chemical reactions in beds of por- 
ous particles, in the drying of solids, 
etc. In the usual case the porous par- 
ticle is surrounded by a flowing gas 
stream on all or much of its surface. 
If the pressure drop due to flow around 
a single porous particle is counted as 
negligible, a constant total pressure 
must exist on the exposed faces of the 
particle. Transport of gases into or out 
of the interior void spaces of the solid 
will then occur by the process of dif- 
fusion. 

Some aspects of the particular case 
of diffusion of a binary gas mixture in 
small channels when the total pressure 
is maintained constant will be con- 
sidered here. These considerations form 
a necessary preliminary to a more gen- 
eral analysis of gas transport in porous 
solids. 

In the following discussion it is as- 
sumed that counter diffusion is occur- 
ring along a path of small diameter 
relative to its length, for example 
through a capillary or the pores of a 
solid. At the ends of the diffusion path 
the gas has a uniform composition, 
that is it is well mixed, and both ends 
of the path are at the game constant 
total pressure. 

N A T U R E  OF DIFFUSION IN 
SMALL CHANNELS 

Transport of gas through a small 
channel may occur in a variety of 
ways. If the equivalent radius of the 
channel is large relative to the mean 
free path of the molecules, then trans- 
port may take place because of 
Poiseuille or forced flow if a total 
pressure gradient exists, by ordinary 
diffusion if a partial pressure gradient 
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exists, or by a two dimensional surface 
flow if one of the mokcular species is 
adsorbed to a considerable degree. 

If the radius of the channel is small 
relative to the mean free path, trans- 
port occurs by Knudsen flow or mo- 
lecular streaming in the presence of 
either a total pressure or partial pres- 
sure gradient. In the present case the 
transport mechanism will be assumed 
to be either Knudsen or ordinary dif- 
fusion, depending on the relationship 
between radius and mean free path. 
It is apparent that a region will exist 
in which the dif€usive process is inter- 
mediate in nature between these two 
extremes. Qualitatively this region ap- 
pears to extend from values of about 
0.1 to 10 T / A .  For most gases at ordi- 
nary temperatures and pressures these 
values correspond to pore radii from 
0.005 to 0.5 p, a range of pore sizes 
encountered in a great many com- 
mercial solid catalysts. Thus this inter- 
mediate or transitional diffusive be- 
havior is of considerable practical 
interest. 

In fine pores, of the order of magni- 
tude given above, Wheeler ( I ,  2 )  and 
others have shown that appreciable 
total pressure differences are required 
if Poiseuille flow is to be of the same 
importance as a transport mechanism 
as is diffusive %ow. Therefore, for the 
usual case of a porous particle bathed 
in a fluid, the pore channel would 
have to be of the order of 10-p radius 
or greater before any appreciable frac- 
tion of the total gas transport could be 
attributed to forced flow caused by 
small differences in total pressure. In 
the particular case of a porous solid 
immersed in a steady state flowing gas 
the total pressure differences would 
usually be small over the length of one 
particle. 

The situation described above has 
some important consequences. In the 
usual physical concept of mutual dif- 

tem will be true here ody  in spedial 
circumstances. In general the Fick‘s 
first law form of the diffusion equation 
often used is not correct with respect 
to a system of fixed coordinates for 
ordinary diffusion in a small channel 
when the total pressure is constant at 
both ends of the diffusion path. It is 
necessary to h o w  what the relative 
rates of transport of each gas will be 
if appropriate diffusion equations are 
to be applied. In the following section, 
a proof will be offered that these rela- 
tive rates are equal to the square root 
Qf the inverse of the molecular weight 
ratio of the two gases, when the total 
pressure is taken as constant through- 
out the diffusing system. This relation- 
ship has already been demonstrated 
experimentally, (3, 4 ) ,  but a complete 
explanation has not previously been 
given. 

INDIVIDUAL RATES OF DIFFUSION 
IN CONSTANT PRESSURE SYSTEMS 

Suppose a gas mixture is diffusing 
through a fine capillary, and the pres- 
sure and composition are maintained 
at constant steady state values at each 
end of the capillary. 

If T >> A, then ordinary diffusion 
occurs, and from the simple momen- 
tum transfer theory of Maxwell 

The above equation which is not 
confined to the constant total pressure 
case cannot be used without some 
knowledge of the value of N J N , .  AI- 
though constant total pressure is usu- 
ally taken to imply that equimolar 
counter diffusion exists, the conditions 
described earlier allow a constant total 
pressure to be maintained without the 
necessity for equimolar counter diffu- 
sion also occurring. 

Tf binary diffusion of gases at con- 
stant total pressure is considered in 
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any individual capillary, then an over- 
all momentum balance written be- 
tween the two ends of the capillary 
shows that, in general, a net shearing 
stress exists at the wall of the channel. 
This shearing stress is very small and 
will not exceed a value of more than 
a few dynes per squared centimeter in 
ordinary situations. It is apparent that 
as the capillary radius decreases, such 
small shearin forces must be of de- 

total transport rate. Therefore in capil- 
laries of sufficiently small diameter the 
net axial momentum transported to 
the wall per unit area per unit time 
can be set equal to zero in a good 
approximation. Calculations show that 
this approximation would be valid, for 
example, for all but the coarsest of 
porous solids normally encountered in 
practice. 

Therefore if the limitation is im- 
posed that, effectively, the net axial 
momentum transported to the wall per 
unit area per unit time is zero, and if 
diffuse molecular reflection is assumed, 
then these conditions can be written 
for an arbitrarily small element of wall 
surface as 

creasing sign' B cance in determining the 

- - 

where U, and U, are the average vel- 
ocities of gases A and B. Inasmuch as 

it follows from Equations (2) and (3)  
that 

M B  

(4) 

where GA and GB refer to the rate of 
diffusive transport of those molecules 
striking the wall. This equation has 
also been given by Hoogschagen (3 ) .  

Of these molecules which strike the 
wall some have obviously made their 
last intermolecular collisions very close 
to the wall, while others will have 
come from a greater distance. How- 
ever the probability of any significant 
number of these molecules coming 
from a distance that is very much 
greater than the mean free path is 
negligible. Therefore all the molecules 
striking the wall can be thought of as 
coming from a volume element that is 
thin in comparison with the radius of 
the capillary. 

Not all molecules in such a volume 
element strike the wall. However it is 
reasonable to suppose that the mole- 
cuIes which leave the volume element 
in other directions after collision have 
the same average diffusive rate as 
those which strike the wall. Therefore 
Equation (4 )  should apply to all the 
molecules that have already collided 
in the volume element. 

GA u A ~ A  

G B  u B ~ B  

-- --=-(%) 

Fig. 1. Apparatus for measuring diffusion rates in porous solids at 
varying total pressures. 

Obviously the above argument can 
be extended to any surface element, 
and Equation (4) applied to the en- 
tire surface. I t  can be said then that 
a layer in the form of a thin film exists 
adjacent to the wall such that all 
molecules colliding in this layer travel 
either back into the interior of the 
capillary or strike the wall. If a second 
similar thin layer is considered adja- 
cent and parallel to the wall layer, 
then it is also required that there be 
no net shearing stress between these 
two layers; that is there must be no 
net momentum transfer through any 
surface element. If the average differ- 
ences in the axial diffusive transport 
velocities of species A and B passing 
through this element of the surface 
from the wall side and from the di- 
rection of the capillary interior are 
du, and duB, then the above condition 
is met by writing 

- - 
mn Vn du, = - mB nB 2111 dun ( 5 )  

This equation can be rearranged to 
give 

Therefore G A  and GB must have the 
same ratio as that in the layer adjacent 
to the wall. Also it is apparent that 
Equation (6) will apply to a surface 
element on the inner side of the thin 
cylindrical layer. When one extends 
the above argument, Equation (4) 
can be generalized for all the gas in 
the entire cross section of the capil- 
lary. It is not required that Gn and G B  

have constant values in the direction 
normal to flow, but only that the ratio 
of the two transport rates must always 
be the same. 

If the capillary radius is such that 
r << A, then Knudsen diffusion will 
prevail, and it is evident from the 
well-known Knudsen diffusion equa- 
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tion that the relative rates of diffusion 
of two gases are given also by Equa- 
tion (4). 

From these arguments gas-diffusion 
processes at constant total pressure 
can be summarized as follows. In large 
channels equimolal counter diffusion 
must occur, and as channel radius de- 
creases, the ratio of diffusion rates of 
the two species changes and finally 
approaches the ratio ( M A / M B ) 1 / 2  well 
before the point at which the radius is 
of the order of a mean free path 
length. With further decrease in chan- 
nel radius the ratio of diffusion rates 
remains at this value as the transport 
process changes in nature from ordi- 
nary to Knudsen diffusion. 

RATE OF DIFFUSION IN THE 
TRANSITION ZONE 

If the conditions of diffusion are 
such that r - 1, then the diffusion 
process will have a mixed character. 
As yet the only expressions which 
have been presented for describing 
the rate of diffusion in this region are 
either semiempiripal in character, such 
as those of Wheeler (1, 2) ,  or are 
complex and of limited applicability, 
such as that of Pollard and Present 
( 5 ) ,  for self-diffusion. 

Apparently,' elementary momentum 
transport theory in gases has not yet 
been applied to this transition region. 
In this region the frequency of wall 
collisions relative to intermolecular col- 
lisions must increase. Therefore the 
total pressure drop for gas A in a 
binary mixture of A and B can be 
considered as being due to the sum of 
two momentum transfer processes, the 
rate of momentum transfer to the wall, 
and the rate of transfer of momentum 
arising from unlike molecular colli- 
sions. 

Therefore in a section of capillary 
tube of length L one can write 
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If the quantity Xa = 1 - a y A a  + 
DAB/DKA is introduced, together with a 
similar definition for X,, then (13) 
can be written as 

(14) 
DAB u, = - 
X Z Y  

where X L z  is the logarithmic mean 
average d e h e d  by 

X,, = - = Xa - Xi 
In X J X ,  

ff ( Y 4 -  p z )  

1 (15) 

1 - a p z  + DAB/DKA 

In employing the quantity 01 = 1 + 
( N B ) / ( N I L ) ,  it should be remembered 
that N n / N A  is positive for concurrent 
diffusion and negative for counter dif- 
fusion. The apparent dependence of 
this mean diffusion coefficient on the 
composition arises because of the dif- 
ferent functional form of the two 
diffusion equations applying in this 
case. 

In the special case of self-diffusion, 
or if two counter diffusing gases have 
equal molecular weights, a = 0. 
Equation (8) then integrates to 

h( 1 - (I! Y A i  + D A ~ J D ~ A  

D 

PRESSURE, ATMS 

Fig. 2. Diffusion of oxygen or hydrogen through porous solids in the transition 
region: open circle, half open circle, half open circle dark on right side experi- 

mental, curve Equation (9). 

where the first term on the right-hand 
side describes the rate of momentum 
transfer to the wall, and the second 
term is the Maxwell expression for the 
rate of momentum transfer between 
unlike colliding molecules. 

The expression defining a Knudsen 
diffusion coefficient for a circular tube 
can be introduced into the above 
equation; that is DKA = 2/3 r)d.  In 
addition, since the total pressure is 
constant, P A  + pB/P = 1.0 = Y A  + yn, 
where y A  and y D  are the respective 
mole fractions of A and B. 

When one introduces these relation- 
ships and simplifies, Equation (6) be- 
comes 

GAdL = - - 
pdyn kT I 

where GA = uA nn, Gn = uB ns, and (I! 

This equation can be readily inte- 
grated for the steady state to give an 
expression for N A ,  the total rate of 
transport of A, in moles per unit time 
per unit area: 

= 1 + GB/GA. 

P DAB N ---- 
' - R T L  a 

In{ 1 - apI) + DAB/DKA } (9) 
(1 - ap,)  + D d D ,  

where y ~ ,  and Y A .  refer to the two ends 
of the diffusion path, and cy is now 
1 + ( N B ) / ( N A ) *  

The above equation must reduce to 
the expression for ordinary diffusion in 
one limit ( r  >> h )  and to the expres- 
sion for Knudsen diffusion in the other 
limit ( 7  << h )  . For ordinary diffusion 
at constant pressure in the steady state 
the integrated Maxwell equation is 

Similarly, for Knudsen diffusion, Equa- 
tion ( 11) applies: 

For ordinary diffusion DKA >> DAB, 
and the ratio DAB/D,A is very small. 
It is apparent that Equations (9) and 
(10) then become identical. On the 
other hand for Knudsen diffusion DgA 
<<DAB, and the ratio DAB/DKA be- 
comes a large number. The logarith- 
mic term in (9) therefore approaches 
a value of unity, and the logarithm 
can be replaced by the first term of its 
series expansion. If the ratio DAn/D, 
>> 1 - ayA, as would be expected, 
then Equations (9) and (11) become 
identical. 

If it is desired to define a single 
mean or average diffusion coefficient 
DN for the transition zone by means 
of the usual simple diffusion equation, 
that is 

then Equations (9) and (11) can be 
equated to give 

In DAB D ,  = 

1 
1 1 (16) 

(D,fD,,) 
Equating this with Equation (12) one 
sees that 

an expression which has been pre- 
sented for the transition zone by 
Bosanquet (6) .  It was shown by Pol- 
lard and Present ( 5 )  that Equation 
(17) gives almost the same values as 
their more complex expression for 
self-diffusion in the transition zone. 

APPLICATION TO DIFFUSION IN 
POROUS SOLIDS 

In applying Equation (9) to a por- 
ous solid the transfer rate is conven- 
iently based on unit geometric cross- 
sectional area of the solid, and the 
diffusion path length is taken to be 
the actual length of the solid. The 
diffusion coefficients then become ef- 
fective values, which differ from the 
true values by a geometric factor 
which describes the increased path 
length due to tortuosity of the pores, 
and the reduction in cross-sectional 
area because of the limited porosity 
of the solid. 

It might be expected that Equation 
(9) would not apply precisely to a 
porous solid because the pores are 
never of a completely uniform size, 
nor are they, in general, circular in 
shape. These factors would influence 
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TABLE 1 
DifT. 

Effective Equivalent pore ratio, 
Test gas. Poros- diff. coeffs..* True Diff. Elec. res. True radius microns Equation 

Sample A ' ity, % DABP DKA DABP ratio 

Selas 015 microporous porcelain Ox-A 61.4 0.072 1.31 0.200 2.78 
(Selas Corp.) 

Selas 03-2 Hz-Nz 28.6 0.085 . 0.54 0.763 8.98 
Celite catalyst support (diato- H2-Ne 56.1 0.0945 0.555 0.763 8.08 

macwus earth, Johns-Manville 
co. ) 

Kaolin-unglazed porcelain (Coors &-N, 34.7 0.053 0.117 0.763 14.4 
Porcelain Co. ) 

* All diffusion coelcients at 20°C. in sq. cm./sec. 
1. By mercury penetration. 
2. Calculated from true value of D X A .  

Diffusion ratio is ratio of true to effective value of DAB. 

the coefficient DE, primarily because 
of its specific dependence on the pore 
shape and dimensions. However if the 
solid had a fairly uniform pore struc- 
ture, reasonable average values might 
be obtained for these coefficients. 
Obviously, the best values might be 
expected to result from the use of 
experimental diffusion data, rather than 
from other less direct measurements 
(for example premeability tests). 

The rates of counter diffusion of 
hydrogen and nitrogen, or of oxygen 
and argon, were measured through a 
number of porous solids. A constant 
pressure steady state flow technique 
was used, similar to that employed by 
Weisz (7) but with larger cylindrical 
samples and somewhat higher flow 
rates. The apparatus is shown sche- 
matically in Figure 1. The major 
modification in the apparatus consisted 
of combining the outlet streams from 
the two halves of the diffusion cell 
and removing the combined flow 
through a manostat and a vacuum 
system. Analysis of the outlet streams 
was accomplished by withdrawing a 
small sample continuously from either 
stream through a separate pump (not 
shown). The sample stream was usu- 
ally only 10 to 20% of the total flow. 
With this arangement it was possible 
to operate the diffusion cell at any 
absolute pressure from 1.0 down to 
about 0.01 atm. Analysis was by means 
of a modified thermal-conductivity 
cell described elsewhere (8). 

In all tests pure gases were used on 
each face of the solid, and outlet con- 
centrations were low. Therefore the 
total partiaI pressure difference for a 
diffusing gas was always in the range 
of 95 to 99% of the absolute pressure. 
Results were expressed as the rate of 
diffusion of hydrogen, or of oxygen, 
depending on the gas pair used. 

Experimentally measured values were 
substituted in Equation (9) from runs 
at the highest and lowest pressures 
and the resulting equations solved 
simultaneously for values of D K a  and 
DARP. From the high-pressure results 
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the value of the ordinary diffusion 
coefficient was obtained, and the 
value of the Knudsen coefficient was 
taken from the low-pressure values. 
Inasmuch as the geometric length and 
area of the porous solid were used in 
these calculations, the value of the 
ordinary diffusion coefficient so found 
was an effective value. The true value 
of this coefficient was obtained from 
the literature. If it is assumed that the 
geometric parameter given by the 
ratio of the true value to the effective 
value of the ordinary diffusion coeffi- 
cient also applies to Knudsen diffusion, 
then the true and effective Knudsen 
diffusion coefficients are also known; 
that is 

The diffusion coefficients obtained 
as described above were used to cal- 
culate the diffusion rate at intermedi- 
ate pressures. The results are shown in 
Figure 2 for three different types of 
porous solid and for both gas pairs. 
The solid line represents the calculated 
values in accordance with Equation 
(9), and the points give experimen- 
tally measured values. The properties 
of the three soIids are given in Table 
1. The Selas and porcelain (kaolin) 
samples had a narrow range of pore' 
sizes, while the celite had a fairly uni- 
form distribution of pore diameters 
over a much wider range. 

An inspection of the results shows 
that Equation (9) satisfactorily de- 
scribes the rate of diffusion through 
these solids. Curves plotted in the 
fashion shown in Figure 2 should be- 
come asymptotic to a 45-deg. line at 
the low-pressure end and approach a 
constant vaIue in the high-pressure 
range. The approximate location where 
r = k is also shown on each plot. 

It should be possible to calculate an 
equivalent pore radius for diffusion 
from the values of the Knudsen dif- 
fusion coefficient obtained. This value 
is also given in Table 1 and is com- 
pared with the value obtained by mer- 
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ratio DEA 1 2 122) 
(See footnotes below.) 

2.90 3.64 1.17 1.24 2.73 

8.00 4.85 0.60 0.47 8.78 
8.87 4.49 0.48 0.39 7.70 

19.3 1.69 0.16 0.144 13.4 

cury penetration measurement. The 
agreement again is good. 

The statement has also been made 
(9) that electrical resistivity ratio in 
a porous solid should be analogous to 
the ratio of the true ordinary diffusion 
coefficient to the effective coefficient. 
The resistance ratios were measured 
for these solids, and the values of the 
two ratios are compared in Table 1. 
Agreement is satisfactory in view of 
the diaculty of measuring the electri- 
cal resistance for fine pored solids. 

In another paper (10) the authors 
have shown that it should be possible 
to calculate an effective Knudsen dif- 
fusion coefficient from flow tests in 
which the specific flow rate is obtained 
as a function of the mean total pres- 
sure. Extrapolation of the straight-line 
plot obtained to zero pressure can be 
taken to give the value of the slip flow 
coefficient. On the basis of the flow 
equation presented by the authors it 
was shown that the ratio of the slope 
A to the zero pressure intercept B is 
given by 

A 3r 

B 4.,-&; 

It was further shown that the limiting 
Knudsen molecular flow CAP is given 
by the equation 

- 
(19) -=- 

Ap (20) 
4BAp 

CAP = - = DE. A, - 
x kTL, 

The right-hand side of the above 
equation serves as a definition of D,,, 
the effective Knudsen diffusion coeffi- 
cient. Rearranging the above equation 
one gets 

Combining this equation with D x A  = 
2 / 3  pu, and with Equation (19), one 
obtains the result for the diffusion 
ratio based on Knudsen flow: 

Dg.4 1% A TA* (22) -- ---- 
Dg. 9 B' mL, 
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Table 1 includes the values of the dif- 
fusion ratio calculated in this way 
from flow rate vs. mean total pres- 
sure plots. The agreement is well 
within the probable experimental error. 

DISCUSSION 

The form of Equations (9) and (13) 
indicate a rather slow convergence to 
the asymptotic values at high and low 
pressures. Therefore a mixed mode of 
dBtlsion does occur to an appreciable 
degree over a wide range of values 
of the ratio r/A. On the basis of the 
results for the porous solids this would 
appear to be a somewhat greater 
range than the hundredfold value 
given earlier. The convergence of 
Equations (9) or (13) is intermediate 
between the simple form of Equation 
(17) and the more rapidly converging 
intuitive equation proposed by Wheeler 
(21, g‘ wen as 

DN = DAB (1 - e - D d B ’ D K A )  (23) 
A more rigorous test of Equation 

(9) would require experiments of the 
same kind as those performed on the 
porous solids but with true capillaries 
of known dimensions. Such work is 
currently under way. 

However it would appear that the 
diffusion equation presented here gives 
an adequate description of the transi- 
tion zone of diffusion for binary gas 
mixtures and can be applied with 
good accuracy to porous solids. 
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NOTATION 
A,,L, = geometric area and length 

of porous sample 
DAB = binary mutual diffusion co- 

efficient for gases A and B, 
sq. cm./sec. 

D,, = Knudsen diffusion coefficient 
for gas A, sq. cm./sec. 

DN = mean diffusion coefficient 
G 5 molecular transport rate, 

molecules/ ( sec. ) (sq. cm. ) 
k = Boltzmann constant 
L,x, = length of diffusional path, 

rn = mass of a molecule 
M = molecular weight 
n = molecular concentration, 

molecuIes/cc. 
N = molar transport rate, moles/ 

(sec.) (sq. cm.) 
p = partial pressure 
P = absolute pressure 
T = radius 
T = equivalent pore radius 
R = gas constant 
T = absolute temperature 
Z l  = diffusional velocity in the 

axial direction, cm./sec., re- 

cm. 

- 

ferred to a fixed set of coor- 
din ate s - 

0 = average molecular speed 
Y 

AP 

h 
1) 

= mole &action 
= mean free path 
= gas viscosity 
= pressure differential causing 

flow 

Subscripts 

A,B = gas A and gas B, respec- 
tively 
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Thermodynamic Properties of Polar Gases 
in the Dilute Phase 

P. T. EUBANK and J. M. SMITH 
Northwestern University, Evonston, Illinois 

A procedure is proposed, based in part on theory and in part on experimental data, for pre- 
dicting the effect of polarity on the thermodynamic properties of polar, organic gases in the 
dilute phase. This correlation was used to predict compressibility factors Z, and the change of 
enthalpy with pressure, in the vapor phase. 

By use of this correlation the computed compressibilities indicated an average absolute 
deviation of 1.0% from available experimental data, which includes reduced pressures UP to 
0.9 and temDeratures to 1.0. Similar comoarisons were mode for the effect of Dressure on 

sent the forces which are present in 
some comDounds but not in others at 

enthalpy. 

Reasonable progress has been made 
in developing prediction methods for 
thermodynamic properties of nonpolar 
gases, particularly pure components. 
However progress has been slight for 
polar substances where electrical prop- 
erties may exert a significant effect. 
The objective of this paper is to pre- 
sent a prediction method for classes 
of organic, polar compounds. 

PREVIOUS CORRELATIONS 

The original method of Hougen and 
P. T. Eubank is at Texas Agricultural and 

Mechanical University, College Station, Texas, 
and J. M. Smith is at the University of Califor- 
nia. Davis, California. 

Watson ( 5 )  assumed that volume and 
energy were the two parameters char- 
acterizing a gas. Thus the reduced vol- 
ume V/V, or the reduced pressure 
P / P ,  was used with the reduced tem- 
perature T/T, to provide the two vari- 
ables which determined the compres- 
sibility factor: 

Z = W / R T  (1) 
Experimental cornpressibiliiy factor 

data have shown that Z is not the 
same function of the reduced pressure 
and reduced temperature for every 
compound. Thus more parameters are 
needed; these parameters must repre- 
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the same lconditions of reduced pres- 
sure and temperature. 

These forces are usually due to one 
of the following causes: deviation from 
spherical molecular shape, or the de- 
gree of acentricity; high electrical 
forces such as manifested by the 
dipole moment and the existence of 
hydrogen bonding; and quantum forces 
which are important in hydrogen and 
helium. 

This latter effect will not be con- 
sidered here, since it is important in 
only the compounds mentioned. All 
compounds are effected by the first 
effect with the exception of the inert 
gases, which are spherical. For this 
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