
GWE Spring 2010 - Long Problems

1: Two identical objects A and B, of mass m each, are connected by a
spring, of spring constant k. At t = 0 the two objects are at rest, and the
spring is in its equilibrium position. For t > 0, the object A is subject to an
external force Fext = F cos (ω t) , with F and ω constant, as shown in Figure
1. Compute the motion of the object B for any t ≥ 0. Neglect all friction.
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Figure 1: Long problem 1

2: The neutron has the magnetic dipole moment

~µ = γ ~S (1)

where γ is a constant, and ~S is the spin of the neutron.
A nonrelativistic neutron with momentum ~k is moving in a uniform and

constant magnetic field. The interaction between the neutron magnetic
dipole moment and the magnetic field gives a term in the hamiltonian Ĥ
of this system. (i) Write down the complete hamiltonian Ĥ .

(ii) Assume that the magnetic field is ~B = (0, 0, Bz). What are the
possible energies for the neutron? What are the corresponding normalized
wave functions? (to get the normalization, require that there is a probability
one that the neutron is at some place in a large volume L3).

(iii) Answer the same questions as in part (ii), in the case of a magnetic

field ~B = (Bx, 0, Bz) ≡ | ~B| (sin θ, 0, cos θ).
(iv) Assume now that Bx is very small, and can be treated as a pertur-

bation on the problem solved at point (ii), where Bx was taken to vanish.
Starting from the unperturbed solutions obtained in (ii), compute the pos-
sible energies of the neutron to first order in Bx. Compare with the exact
energies obtained in (iii).

1



3: Let Z1 (m) be the partition function of a single (quantum) particle of
mass m in a volume L3, at the temperature T .

(i) Consider a system of two such particles, assuming that they do not
interact. Denote by Z2,dist (m) the partition function of the system assuming
that the two particles are distinguishable. Express this quantity in terms of
Z1 (m).

(ii) Assume now that the two particles are indistinguishable spin zero
bosons. Denote by Z2,bose (m) the partition function for this system. Express
this quantity in terms of Z1 (m) and Z1 (m/2).

(iii) Comparing the cases (i) and (ii), calculate (to lowest order in the
quantum effects) the correction to the expectation value of the energy of the
two particle system due to Bose statistics. In which regime is the correction
negligible?

4: Consider a system of two particles, with identical masses, orbiting in a
circle around their center of mass. (i) Show that the gravitational potential
energy of the system is −2 times the total kinetic energy.

(ii) This relation is true, on average, for any system of particles held
together by their mutual gravitational attraction: Ūpotential = −2 Ūkinetic,
where Ū ’s are the total amount of potential and kinetic energies, averaged
over some sufficiently long time. Suppose that you add a small amount of
energy to such system, and then you wait until it equilibrates. Will the
particles in the system, on average, move faster, or more slowly? Explain.

(iii) Compute the potential energy for a uniform spherical distribution of
particles of radius R and total mass M .

(iv) Assume that a star can be modeled by an ideal gas of particles obey-
ing classical statistics, at the same temperature T , which interact among
themselves only gravitationally. Estimate the temperature of a star of mass
M = 2 × 1030 Kg and radius R = 7 × 108 m. Assume for simplicity that the
star contains only protons and electrons.
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5: Consider a uniform infinitely long cylindrical wire, of cross section area
A, with a current I flowing through it. Consider a charged object, of charge
q > 0, moving parallel to the wire, with speed v. The object is outside the
wire, at the distance d from it (d ≫

√
A). The wire is neutral, and the object

moves in the direction opposite to the flow of the current in the wire.
(i) Compute the magnitude and direction of the magnetic force ~F acting

on the charged object.
(ii) Assume the following idealized situation for the wire: the wire is

made of only protons and electrons, uniformly distributed within it. The
proton and electrons have the same number density n (n has dimension of
inverse volume). The protons are at rest, while all the electrons move with
the same velocity ~v. Assume that this velocity is equal (both in magnitude
and direction) to that of the outside object. Express the current I in terms
of v (and of any other relevant parameter), and insert this expression in the
formula for the magnetic force computed in (i).

All the above statements are made by an observer O at rest with respect
to the wire. Consider now the same situation in the rest-frame of the outside
charged object.

(iii) Does the object experience a magnetic force in this frame?
(iv) Compute the number densities of protons (n′

+) and electrons (n′

−
)

inside the wire in this frame (hint 1: the electric charge of any individual
particle is the same in both frames; hint 2: notice that, due to the symmetry
of the problem, there is a simple relation between the ratio n′

+/n and the
ratio n′

−
/n).

(v) Compute the linear charge density of the wire in this frame (charge

per unit length along the wire). Compute the force ~F ′ acting on the outside
object in this frame.

(vi) Show that the resulting ratio ~F ′/~F is only function of the γ factor
between the two frames, and of no other parameters. Show that this result
is the one you would have expected, given that ~F = ∆~p/∆t, ~F ′ = ∆~p ′/∆t′,
and how ∆~p and ∆t are related to ∆~p ′ and ∆t′.
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6: A particle of mass m is confined to slide on the surface of an “upside
down” cone with semi-angle α, as shown in Figure 2, and is subject to the
constant gravitational field of the Earth surface. The axis of the cone is on
the z−axis. Neglect any form of friction for points (i) and (ii).

(i) Write down the Lagrangian for this particle, using the coordinates r
and θ, defined by x = r cos θ and y = r sin θ (notice that r and θ completely
specify the position of the particle on the surface of the cone). Write down
the Euler-Lagrange equations, obtained from this Lagrangian, that describe
the motion of the particle.

(ii) For appropriate speed |~v|, the particle can move on a horizontal - and
therefore circular - trajectory with z = z̄ = constant. Write down the relation
between z̄ and the speed. Write down the total energy for the particle in this
motion.

(iii) For this part only, assume that the cone is filled by some viscous

medium, so that the particle is subject to a dragging force ~Fdrag = − b~v,
where b is constant and ~v is the velocity of the particle. Assuming that the
particle is initially (at t = 0) on a circular horizontal orbit, with height z̄0,
and that the effect of the drag is small, so that the orbits of the particle
can be approximated as circular at all times (with a very slowly decreasing
radius, due to the drag), compute the time evolution of the height of the
particle z̄ (t).
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Figure 2: Long problem 6
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