Go to the U of M home page
School of Physics & Astronomy
School of Physics and Astronomy Wiki

User Tools


classes:2008:fall:phys4101.001:chapter3

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
classes:2008:fall:phys4101.001:chapter3 [2008/11/24 23:43] x500_flei0029classes:2008:fall:phys4101.001:chapter3 [2008/12/02 22:38] (current) yk
Line 2: Line 2:
 Feel free to write anything related to what you have learned in Chapter 3 or wanted to learn but did not learn enough.  Feel free to write anything related to what you have learned in Chapter 3 or wanted to learn but did not learn enough. 
  
- 
- 
- 
-Lecture notes from the week of 11-17 
- 
-11-17-08 
-Stern Gerlach Experiment 
-Addition of L and S 
- 
-T=2π/ω   ω=γβ   
-Χ(T)= Martix      Upper left=cos(π/2) Upper right= exp(iω/2*2π/ω) -> exp(iπ)  Lower left = sin(α/2)exp(iδ) Lower right same as upper right 
- 
-So  Χ(T)= -Χ(0)  and Χ(2T)= Χ(0) 
-l=1 ->Y(lm)(θφ) ~ exp(imφ) with m=±1, 0 
- 
-Interference  
- 
-Χfinal= X1+X2 without the B field 
-Xfinal=-X1+X2 with B field 
- 
-SG Expt 
- 
-See book for diagrams 
-X(0) = (a, b) (vertical matrix) = aX++bX- 
- 
-E+ =-γ(B+αZ)1/2 h2 
-E- =-γ(B+αZ)1/2 h2 
-When t=T (time evolution) 
- (a*exp(-i E+/ h)T   b* exp(+i E+/ h)T) 
-Ψ -> Ψ(z)= exp(i (something)z) which is plane wave propagating in the z direction 
- 
-The bottom line: Pz= ±γα h/2 
-11-19-08 
-Combining two or more angular momentum 
- 
-↑↑ ↑↓ ↓↑ ↓↓ 
-1/√2(↑↓ + ↓↑) triplet 
-1/√2(↑↓ - ↓↑) singlet 
- 
-H α S(electron)+S(proton) 
- 
-H equals to a 4x4 (a, b, c, d )matrix times a 1x4 matrix of the arrows.  
-H↑↑ where ↑↑ vertical matrix like (1, 0, 0, 0) (except vertical) 
-So it becomes a↑↑+b↑↓+c↓↑+d↓↓ 
- 
-S(electron) dot S(proton) ↑↑= (h/2)2 ↑↑ 
- From S(e)S(p)=S(ex)S(px)+S(ey)S(py)+S(ez)S(pz) 
- 
-S(ez)S(pz) ↑↑= h /2 h /2 
-S(e+)S(p+) ↑↑=0 
-S(e-)S(p-) ↑↑=0 
-S(ez)S(pz) ↑↑= h2↓↓ 
- 
-These lead to  h /4(1 000, 0-1 2 0, 0 2 -1 0, 0 0 0 1)  
- 
-S(tot) = (S1+S2)2 The S’s commute so 
-=S12+S22+2S1 S2 
-The eigenvalues for S12 and S22 are 3/4 h2 
-And it becomes S12↑↑=3/4 h2↑↑ and the same for S22 
- 
-S(tot)2= 2(3/4 h2(Identy Matrix))+ 2S1 S2 
- 
-Find the determinate -> (1-λ)2((-1-λ)2-4=0 to get the eigenvalues 
- 
-11-21-08 
-Take ↑↑ ↑↓ ↓↑ ↓↓ angular spin combinations which is a member of s=1 (s2=1(1+1)h2) 
- 
-↓↓ ↑↑ have angular momentum of at least one 
- 
-Start with ↑↑ spin => |S, Sz> = |1, 1>  
-S is the total spin 1(1+1) h2) and Sz is the z component of the total 
- 
-l1 and l2 refer to the magnitude 
-l1+l2  l1+l2+1 …  | l1-l2| 
-With the spin ½ particles there is only parallel or antiparallel 
- 
-Apply S- to the total spin 
-S-= S(1)-+ S(2)-↑↑ 
-S-|1,1>=(normalization factor)|1,0> 
-Normalization-> √l(l+1)-m(m-1)|1,0> -> √2|1, 0> 
- 
-S(1)-+ S(2)- ↑↑= S(1)-↑↑ + S(2)- ↑↑ 
-=↑↓ ↓↑ to be equal to what we got earlier √2|1, 0> 
- 
-|1,0>=1/√2( ↑↓ + ↓↑) 
- 
-Summarizing   |1,1>=↑↑ 
-|1,0>=1/√2( ↑↓ + ↓↑) 
-|1,-1>=↓↓ 
- 
-l=1 S=1/2 
-lz=1  ↑ S↑ or  ↓ 
-lz=-1  ↓ 
-lz=0   → 
- 
-Six possible combinations 
-|l, S> -> |3/2, 3/2> |J, Jz> J is total angular momentum, Jz is z component 
- 
-Apply the I operator 
-J-=L-+S- 
- 
-J-|3/2, 3/2>=(something)|3/2,3/2> 
-L-= applies to one and S- to the other (from J-) 
- 
-Actually Chapter 4 typed up in an attempt to clear things up for myself. 
-Amy Fleischhacker 11/24/08 
classes/2008/fall/phys4101.001/chapter3.1227591836.txt.gz · Last modified: 2008/11/24 23:43 (external edit)