Go to the U of M home page
School of Physics & Astronomy
School of Physics and Astronomy Wiki

User Tools


classes:2009:fall:phys4101.001:lec_notes_0911

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
classes:2009:fall:phys4101.001:lec_notes_0911 [2009/09/14 14:38] ykclasses:2009:fall:phys4101.001:lec_notes_0911 [2009/09/23 22:43] (current) yk
Line 1: Line 1:
-===== Sept 11 (Fri) ===== +===== Sept 11 (Fri) Probability interpretation ===== 
-** Responsible party: Schrödinger's Dog, Devlin**+** Responsible party: Schrödinger's Dog**
  
-**To go back to the lecture note list, click [[lec_notes]]**+**To go back to the lecture note list, click [[lec_notes]]**\\ 
 +**previous lecture note: [[lec_notes_0909]]**\\ 
 +**next lecture note: [[lec_notes_0914]]**\\
  
 +**[[Q_A]]**
  
 === Main points === === Main points ===
Line 41: Line 44:
 By the definition of differentiation, <math>\frac{d}{dt} \int_{-\infty}^{\infty} f(x,t) dx=\lim_{\Delta t\rightarrow 0} \frac{\int_{-\infty}^{\infty} f(x,t+\Delta t) dx - \int_{-\infty}^{\infty} f(x,t) dx}{\Delta t} </math>.\\ By the definition of differentiation, <math>\frac{d}{dt} \int_{-\infty}^{\infty} f(x,t) dx=\lim_{\Delta t\rightarrow 0} \frac{\int_{-\infty}^{\infty} f(x,t+\Delta t) dx - \int_{-\infty}^{\infty} f(x,t) dx}{\Delta t} </math>.\\
  
-In order to get the difference between the two terms in the numerator of the RHS, it may be convenient to express <math>f(x,t+\Delta t)</math> to <math>f(x,t)</math> If we CHOOSE to compare these two terms for the same value of //x//* (note that this is up to me), we find that <math>f(x,t+\Delta t) = f(x,t)+\frac{\partial f(x,t)}{\partial t}\Delta t</math> By subbing this into the above expression with a limit, we find that <math>\lim_{\Delta t\rightarrow 0} \frac{\int_{-\infty}^{\infty} f(x,t+\Delta t) dx - \int_{-\infty}^{\infty} f(x,t) dx}{\Delta t} = \lim_{\Delta t\rightarrow 0} \frac{\int_{-\infty}^{\infty} \frac{\partial f(x,t)}{\partial t}\Delta t dx}{\Delta t} = \int_{-\infty}^{\infty} \frac{\partial f(x,t)}{\partial t} dx</math>.+In order to get the difference between the two terms in the numerator of the RHS, it may be convenient to express <math>f(x,t+\Delta t)</math> in terms of <math>f(x,t)</math> If we CHOOSE to compare these two terms for the same value of //x//* (note that this is up to me), we find that <math>f(x,t+\Delta t) = f(x,t)+\frac{\partial f(x,t)}{\partial t}\Delta t</math> By subbing this into the above expression with a limit, we find that <math>\lim_{\Delta t\rightarrow 0} \frac{\int_{-\infty}^{\infty} f(x,t+\Delta t) dx - \int_{-\infty}^{\infty} f(x,t) dx}{\Delta t} = \lim_{\Delta t\rightarrow 0} \frac{\int_{-\infty}^{\infty} \frac{\partial f(x,t)}{\partial t}\Delta t dx}{\Delta t} = \int_{-\infty}^{\infty} \frac{\partial f(x,t)}{\partial t} dx</math>.
  
 *Even though it's silly to choose different value of //x// by <math>\Delta x</math>, then <math>f(x+\Delta x,t+\Delta t) = f(x,t)+\frac{\partial f(x,t)}{\partial t}\Delta t+ \frac{\partial f(x,t)}{\partial x}\Delta x</math>. *Even though it's silly to choose different value of //x// by <math>\Delta x</math>, then <math>f(x+\Delta x,t+\Delta t) = f(x,t)+\frac{\partial f(x,t)}{\partial t}\Delta t+ \frac{\partial f(x,t)}{\partial x}\Delta x</math>.
Line 47: Line 50:
 Then, <math>\lim_{\Delta t\rightarrow 0} \frac{\int_{-\infty}^{\infty} f(x+\Delta x,t+\Delta t) dx - \int_{-\infty}^{\infty} f(x,t) dx}{\Delta t} = \lim_{\Delta t\rightarrow 0} \frac{\int_{-\infty}^{\infty} \frac{\partial f(x,t)}{\partial t}\Delta t dx + \frac{\partial f(x,t)}{\partial x}\Delta x dx}{\Delta t} = \int_{-\infty}^{\infty} \frac{\partial f(x,t)}{\partial t} dx + \Delta x[f(x,t)]_{-\infty}^{\infty}</math> Provided that <math>f(x,t)</math> is a normalizable function, the last term should be zero. Then, <math>\lim_{\Delta t\rightarrow 0} \frac{\int_{-\infty}^{\infty} f(x+\Delta x,t+\Delta t) dx - \int_{-\infty}^{\infty} f(x,t) dx}{\Delta t} = \lim_{\Delta t\rightarrow 0} \frac{\int_{-\infty}^{\infty} \frac{\partial f(x,t)}{\partial t}\Delta t dx + \frac{\partial f(x,t)}{\partial x}\Delta x dx}{\Delta t} = \int_{-\infty}^{\infty} \frac{\partial f(x,t)}{\partial t} dx + \Delta x[f(x,t)]_{-\infty}^{\infty}</math> Provided that <math>f(x,t)</math> is a normalizable function, the last term should be zero.
  
 +==Schrodinger's Dog== 
 +Thanks Yuichi, this makes a lot more sense!
 ==End of lecture== ==End of lecture==
      
 S.D.: I wasn't really clear on the last proof, but feel that it isn't a important detail. Besides that, the rest of the lecture was great! S.D.: I wasn't really clear on the last proof, but feel that it isn't a important detail. Besides that, the rest of the lecture was great!
            
 +**To go back to the lecture note list, click [[lec_notes]]**\\
 +**previous lecture note: [[lec_notes_0909]]**\\
 +**next lecture note: [[lec_notes_0914]]**\\
 +
classes/2009/fall/phys4101.001/lec_notes_0911.1252957081.txt.gz · Last modified: 2009/09/14 14:38 by yk